Поможем написать любую работу на аналогичную тему

  • Реферат

    От 250 руб

  • Контрольная работа

    От 250 руб

  • Курсовая работа

    От 700 руб

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Индуктивными называют умозаключения, в которых из единичных или частных суждений выводятся общие суждения.

Выводами индукции (от лат. inductio – наведение) являются общие суждения обо всех объектах какого-либо класса или множества. Такие множества могут быть:

1) конечными и обозримыми, т.е. возможно установить признаки (свойства и отношения) каждого элемента этого множества;

2) конечными, но не обозримыми, т.е. невозможно установить признаки (свойства и отношения) каждого элемента этого множества;

3) бесконечными.

При исследовании этих множеств применяются различные виды индукции.

В зависимости от того, перечислены ли в посылках все или не все элементы изучаемого множества, различают полную и неполную индукцию.

Полная индукция относится к конечным и обозримым множествам.

Полная индукция — это индуктивное умозаключение, в котором общее заключение обо всех элементах множества делается на основании рассмотрения каждого из них.

Поскольку полная индукция предполагает исследование каждого элемента изучаемого множества, её заключение, как и в дедукции, дает достоверное знание, т.е. она гарантирует истинность заключения при истинности посылок.

Схема полной индукции:

а1 имеет признак Р.

а2 имеет признак Р.

аn имеет признак Р.

(а1, а2, …, аn)=А

Все предметы, принадлежащие

множеству А, имеют признак Р.

Пример. «Ни одно коническое сечение не может пересекаться прямой линией более чем в двух точках, так как ни окружность, ни эллипс, ни парабола, ни гипербола не могут пересекаться прямой линией более чем в двух точках».

Структура этого умозаключения выглядит следующим образом:

«Окружность (а1) не может пересекаться прямой линией более чем в двух точках (Р)».

«Эллипс (а2) не может пересекаться прямой линией более чем в двух точках (Р)».

«Парабола (а3) не может пересекаться прямой линией более чем в двух точках (Р)».

«Гипербола (а4) не может пересекаться прямой линией более чем в двух точках (Р)».

Окружность (а1), эллипс (а2), парабола (а3) и гипербола (а4) составляют (и исчерпывают) класс конических сечений (А).

Ни одно коническое сечение (А) не может пересекаться прямой линией более чем в двух точках (Р).

Поскольку заключение в полной индукции является общим знанием, в этом смысле оно является новым по сравнению с тем, что дано в посылках. Но оно, как и в дедуктивных умозаключениях, не содержит никакой принципиально новой информации, кроме той, что заключена в посылках.

Неполная индукция относится к бесконечным, открытым множествам, а также к конечным, но практически не перечислимым в силу большого числа их элементов. Именно с такими множествами обычно имеет дело наука, поэтому неполная индукция более распространена в научном познании. С помощью неполной индукции, в принципе, можно делать заключения и о конечных, обозримых множествах.

Неполная индукция — это индуктивное умозаключение, выводом которого является общее суждение о множестве предметов, получаемое на основании знания только некоторых предметов, принадлежащих данному множеству.

В индуктивных выводах такого типа происходит приращение информации. В силу этого истинность посылок не гарантирует истинность заключения, и заключение является истинным лишь с большей или меньшей степенью вероятности. Другими словами, неполная индукция даёт вероятное, правдоподобное знание. Посылки здесь лишь подтверждают заключение. По существу, они лишь подводят к некоторому предположению, «наводят» на него (отсюда и название умозаключения). Но при этом из истинных посылок может получиться ложное заключение.

Схема неполной индукции:

а1 имеет признак Р.

а2 имеет признак Р.

аn имеет признак Р.

(а1, а2, …, аn)Ì А

Вероятно, все предметы (а), принадлежащие

множеству А, имеют признак Р.

Пример 1. Классическим примером неполной индукции (и того, что получаемый с ее помощью вывод может оказаться ложным) служит известная история с цветом лебедей. Дело в том, что до XVII века в Европе, Азии и Америке встречались только белые лебеди. На основе этих наблюдений было сформировано индуктивное обобщение: «Все лебеди белые». Однако в 1606 году в открытой в то время Австралии были обнаружены черные лебеди, т.е. контрпример, опровергающий истинность данного индуктивного вывода.

Пример 2. До некоторых пор наблюдаемые факты приводили к обобщению: «Все тела при нагревании расширяются». Оказалось, однако, что вода при нагревании от 0 до 4 0С, наоборот, сжимается. Исключения составили также чугун и висмут.

В зависимости от типа методологических средств, применяемых в индуктивных рассуждениях, выделяют две их основные разновидности: ненаучную (популярную) и научную индукцию.

Популярная индукция (полное ее наименование — «индукция через простое перечисление при отсутствии противоречащих случаев») чаще всего применяется в нашей повседневной жизни.

Пример. Так, люди не раз наблюдали, что ласточки перед дождем летают низко над землей. На этой основе был сделан вывод: «Всегда перед дождем ласточки летают низко над землей». Существует немало подобных народных примет, сделанных на основе непосредственного наблюдения. Поэтому такой вид индукции и получил название «популярная» («народная»).

Видовой признак популярной индукции — отсутствие определенного метода отбора наблюдаемых случаев.

Обобщение в популярной индукции основано на том, что во всех наблюдаемых примерах элементы изучаемого множества (А) обладают интересующим нас свойством (Р), которое регулярно повторяется при наблюдении элементов этого множества. Необходимым условием является то, что при этом не встречается ни одного контрпримера.

Ненадежность популярной индукции как способа умозаключения, прежде всего, обусловливается случайным характером выбора элементов из изучаемого множества. Вследствие этого может оказаться, что исследованное подмножество случайным образом обладает интересующим нас признаком (Р), тогда как другие подмножества этого множества могут искомым признаком (Р) не обладать. Таким образом, главный недостаток популярной индукции в том, что она не гарантирует отсутствие контрпримера. Это иллюстрирует пример с лебедями и их признаком «быть белым».

Кроме того, популярная индукция не учитывает разнообразия предметов изучаемого множества.

Пример. Предположим, мы хотим выяснить, знают ли студенты МГУ, кто такой Людвиг Клаагес. Мы подходим к корпусу университета, задаем студентам соответствующий вопрос и получаем на него только положительные ответы и ни одного отрицательного. На этом основании мы можем сформулировать индуктивное обобщение: «Все студенты МГУ знают, кто такой Людвиг Клаагес». Однако потом может выясниться, что мы стояли возле корпуса философского факультета, а студенты технических специальностей МГУ понятия не имеют о том, кто это такой.

Ненадежность выводов популярной индукции связана также с тем, что в таких выводах не исследуется причина самого явления. Вот почему наряду со многими верными народными приметами есть немало ложных обобщений, лежащих в основе суеверий (о «пустых ведрах», «черной кошке» и т.п.).

Популярной индукции свойственна ошибка, называемая поспешным обобщением. Она заключается в том, что индуктивное обобщение формулируется на основании немногих, случайно встретившихся примеров.

Пример. Водитель автобуса на одной из остановок открывает дверь, но никто из пассажиров не выходит и никто не входит. На второй остановке повторяется то же самое, на третьей – то же. Четвертую остановку водитель проезжает, не останавливаясь, и на возмущенный вопрос пассажира: «Почему нет остановки?» отвечает: «Я уже несколько раз зря останавливался, думал, что все едут до конца!»

Пути повышения надежности выводов индукции:

1) по возможности, увеличивать число рассмотренных случаев;

2) по возможности, увеличивать разнообразие (разнородность) рассматриваемых случаев;

3) учитывать характер связи между рассматриваемыми предметами и их признаками.

Последнее требование связано с тем, что наблюдаемый признак может быть случайным, искусственно приобретенным и т.п.

Научная индукция есть комбинация индукции и дедукции, теории и эмпирического исследования. В научной индукции основанием для вывода является не только перечисление примеров и констатация отсутствия контрпримера, но и обоснование невозможности контрпримера в силу его противоречия рассматриваемому явлению. Таким образом, вывод делается не только на основании внешних признаков, но и на представлении о сущности явления. Это означает, что нужно иметь теорию данного явления. Благодаря этому степень вероятности получения истинного вывода в научной индукции значительно повышается.

Пример. Для того чтобы убедиться в достоверности вывода «Всегда перед дождем ласточки летают низко над землей», достаточно понять, что ласточки перед дождем летают низко над землей потому, что низко летают мошки, за которыми они охотятся. А мошки летают низко потому, что перед дождем у них от влаги набухают крылышки.

Если в популярной индукции важно обозреть как можно большее число случаев, то для научной индукции это не имеет принципиального значения.

Пример. Легенда гласит, что Ньютону для открытия фундаментального закона всемирного тяготения достаточно было наблюдать один случай – падение яблока.

Внимание! Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Поможем написать любую работу на аналогичную тему

  • Реферат

    От 250 руб

  • Контрольная работа

    От 250 руб

  • Курсовая работа

    От 700 руб

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Общие свойства предметов, явлений познаются не сразу, а только через познание единичных и особенных свойств. Одним из средств получения общего знания выступает индукция.

Индуктивное умозаключение — такая форма абстрактного мышления, в которой мысль развивается от знания меньшей степени общности к знанию большей степени общности, а заключение, вытекающее из посылок, носит преимущественно вероятностный характер. В форме индуктивного умозаключения протекает эмпирическое обобщение, когда на основе повторяющегося признака у отдельных явлений делается заключение о его принадлежности всем явлениям определенного класса. Здесь нет жесткой необходимости между истинными посылками и истинными заключениями; о том, что данные заключения получаются из данных посылок, можно говорить лишь с большей или меньшей вероятностью (посылки с той или иной степенью вероятности подтверждают заключения). Пример:

Железо — твердое тело.

Медь — твердое тело.

Золото — твердое тело.

Железо, медь, золото … — металлы.

Все металлы — твердые тела.

Если не исследован весь класс металлов, то достаточно найти хотя бы один элемент данного класса, который не является твердым телом, и весь вывод окажется неистинным. Поскольку мы не можем исследовать все возможные металлы и доказать, что они твердые тела, то заключение в данном выводе является вероятностным суждением.

В зависимости от полноты исследования предметов какого- либо класса различают полную и неполную индукцию.

Полная индукция — такое умозаключение, в котором общий вы­вод о классе предметов делается на основании изучения всех пред­метов данного класса. Схема полной индукции:

S1 суть Р

S2 суть Р

Sn суть Р

S1 … Sn — весь класс предметов

Все S суть Р.

Например, когда преподаватель, сделав перекличку своих учеников, убеждается, что каждый из учеников данного класса присутствует на уроке, то он может сделать заключение «Все ученики данного класса явились на урок». Его рассуждение осуществляете» по принципу полной индукции.

Другой пример: установление того, что каждый из документов, необходимых для оценки готовности уголовного дела для передачи в суд, имеется, позволяет с полным основанием сделать заключение, что «Все документы имеются» и дело следует передать в суд.

Некоторые логики склонны относить полную индукцию к дедуктивным умозаключениям, так как в полной индукции из истинных посылок может выводиться достоверное общее суждение.

Полная индукция дает достоверные заключения при наличии следующих условий: а) когда класс предметов или явлений, подлежащих изучению, представляет собой небольшое число элементов — ограничен, поддается «регистрации»; б) когда точно известен признак, принадлежащий предметам данного класса.

Разновидностью полной индукции является умозаключение от отдельных частей к целому (от знания успеваемости в каждой группе факультета к общему знанию об успеваемости на всем факультете). Полная индукция может использоваться при расследовании уголовных дел, связанных с исчезновением материальных ценностей (оружия, боеприпасов, продуктов питания и т. д.), число которых можно подсчитать (тем самым выяснить недостающие ценности).

Но чаще всего юристу приходится иметь дело с фактами, количество которых не может быть строго ограничено. Например, с помощью полной индукции нельзя установить достоверность в обобщениях такого рода, как «Счастливые часов не наблюдают», «Все тела тонут», «Гадюки ядовиты» и т. п. В таких обобщениях может использоваться только неполная индукция.

Неполная индукция — такое умозаключение, в котором общий вывод делается на основании изучения некоторой части класса однородных предметов. Схема:

S1 суть Р

S2 суть Р

Sn суть Р

S1 … Sn — элементы класса

Все S суть Р — этот вывод представляет собой вероятное

(правдоподобное) знание.

По способу отбора исходного материала и обоснования заключения неполная индукция делится на популярную (через простое перечисление при отсутствии противоречащих случаев) и научную, разновидностями которой являются индукция через отбор или индукция через установление причинной связи.

В популярной индукции факты для посылок берутся без специального методического отбора. Общий вывод о наличии какого-то признака у класса предметов делается на основе наблюдения у некоторых явлений данного класса этого признака и при отсутствии противоречащего случая. В результате этой индукции выводы получаются малоправдоподобными, так как противоречащие случаи могут обнаружиться, и вывод тогда окажется ложным. Например, почти во всех учебниках логики приводится пример с выводом, полученным с помощью неполной индукции, — «Все лебеди белые», который оказался ложным после того, когда в Австралии были обнаружены черные лебеди. На основе популярной индукции в массовом сознании создается немало примет, пословиц и поговорок. Например: «Береги платье снову, а честь смолоду», «Старый друг лучше новых двух» и т. д.

Научная индукция — такое умозаключение, в посылках которого наряду с повторяемостью признака у некоторых явлений класса содержится информация о зависимости этого признака от определенных свойств наблюдаемого явления.

Например, при изучении причин преступности среди несовершеннолетних можно взять сто первых попавшихся несовершеннолетних, проанализировать бюджет их свободного времени, уровень образования и на этом основании сделать общий вывод о причинах преступности несовершеннолетних всей области. Это — пример популярной индукции. Но можно поступить иначе. Можно произвести целевой отбор несовершеннолетних для исследования — исследовать определенный процент школьников, учащихся средних образовательных учреждений, техникумов, при этом отбирать эти категории несовершеннолетних из разных районов исследуемого региона. Индукция, в которой посылки готовятся по заранее подготовленному плану, по специально разработанным методикам, называется индукцией через отбор случаев.

Можно также изучить зависимость причин преступности от места учебы, места жительства, уровня образования, занятости на работе и т. д. Индукция, в которой общее заключение делается на основе знания внутренних связей между явлениями данного класса и законов, называется индукцией через установление причинных связей.

Рассмотрим основные ошибки, допускаемые в неполной индукции.

1. «Поспешное обобщение». Ошибка под таким названием допускается тогда, когда заключение делается на основе знаний об отдельных фактах и не учитываются те обстоятельства, которые могут быть причиной исследуемого явления. Например, когда из факта об опоздании ученика на лекцию делается заключение, что данный ученик всегда и везде опаздывает. Подобную ошибку совершают те криминологи, которые в качестве причины преступности рассматривают врожденные биологические качества человека. Данная ошибка лежат в основе слухов, сплетен, непроверенных суждений.

2. «После этого — значит по причине этого)) — ошибка, совершаемая тогда, когда заключение о причинах явления делается на том основании, что оно произошло раньше его. Например, студент не сдал экзамен потому, что когда он шел на экзамен, то дорогу пробежала черная кошка. Источник этой ошибки — смешение причинной связи с временной последовательностью событий. Такого рода ошибка обычно лежит в основе суеверий, предрассудков, «хороших» и «плохих» сновидений и т. д.

Заключение, полученное в результате такой индукции, постоянно находится под угрозой опровержения его истинности: достаточно одного случая, противоречащего общему утверждению, чтобы оно стало ложным.

Внимание! Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Научная индукция применяется в единстве с дедукцией (знанием общих положений, принципов) и дает более точные выводы, чем популярная. Научная индукция лежит в основе открытия научных законов.

Примеры употребления слова индукция в литературе.

Должны ли мы предоставить грабежу свободу действия, пока будем заниматься собиранием и классификацией фактов в странах, где воровство преобладает, и там, где оно составляет редкое явление, пока индукция не разъяснит нам, что благоденствия больше там, где всякий имеет возможность сохранить то, что заработал?

Наблюдая за ней и пытаясь оценить неудачу при индукции, автор заметил ее пристальный взгляд, направленный куда-то в пространство, на уровне плеча, а выражение ее лица и очевидное отключение от окружающих показали, что у нее возникло глубокое состояние транса.

Целью дефиниции была понятийная фиксация общего, полученного при помощи индукции.

Итак, необходимо разделение и разложение тел, конечно, не огнем, но посредством размышления и истинной индукции с помощью опытов, а также посредством сравнения с другими телами и сведения к простым природам и их формам, сходящимся и слагающимся в сложном.

К счастью, автор понял это в самом начале своей деятельности и впоследствии не раз убеждался, что такой подход неизменно облегчает индукцию гипноза любой стадии и помогает добиться самого сложного гипнотического поведения у испытуемого.

Источник: библиотека Максима Мошкова

Объектом индуктивного анализа является класс отдельных случаев, фактов, процессов. В зависимости от того, в каком объеме исследован данный класс, различают полную и неполную индукцию, а по степени вероятности заключения выделяют популярную индукцию (или через простое перечисление) и научную индукцию.

Полная индукция

Полная индукция – это умозаключение, в котором на основе принадлежности каждому элементу класса или каждой части класса определенного признака делают вывод о его принадлежности классу в целом.

Схема умозаключений полной индукции:

A1 обладает признаком Р А2 обладает признаком Р

Ап обладает признаком Р

А1, А2, …, Аn, составляют и исчерпывают весь класс К

Следовательно, каждый элемент класса К обладает признаком Р

Пример.

Общеутвердительные суждения (A) можно превратить

Общеотрицательные суждения (Е) можно превратить

Частноутвердительные суждения (I) можно превратить

Частноотрицательные суждения (О) можно превратить

Суждения A, E, I, О составляют и исчерпывают класс атрибутивных суждений

Все атрибутивные суждения можно превратить

Особенности полной индукции: а) применяется в изучении закрытых классов, число элементов которых ограничено и сравнительно невелико; б) заключение носит достоверный характер и может служить основанием вывода в доказательном рассуждении.

Для примера рассмотрим явление, образно называемое «парадом» планет. Один раз в 179 лет все планеты располагаются вместе по одну сторону от Солнца в секторе углов 95 градусов. Момент их наибольшего сближения произошел 10 марта 1982 г. (хотя в целом это длительный процесс, растягивающийся на несколько лет). Изучим положение каждой планеты.

1. Земля в 1982 г. была расположена вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95 градусов.

Марс в 1982 г. был расположен вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95 градусов.

Венера в 1982 г. была расположена вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95 градусов.

Меркурий в 1982 г. был расположен вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95 градусов.

2. Земля, Марс, Венера, Нептун, Плутон, Сатурн, Уран, Юпитер,

Меркурий – планеты Солнечной системы.

Следовательно, все планеты Солнечной системы в 1982 г. были расположены вместе по одну сторону от Солнца в секторе с углом приблизительно 95 градусов.

Примерами полной индукции могут служить: единогласное голосование на собрании по тому или иному вопросу; установление того факта, что каждый из документов, необходимый для поступления в вуз, имеется в наличии на момент приема документов и др.

Для получения правильного заключения по методу полной индукции требуется выполнить следующие условия:

  • 1) точно знать число объектов и явлений, которые нужно рассмотреть;
  • 2) рассмотреть всех представителей данного класса;
  • 3) точно знать, что признак, распространяемый па всех представителей данного класса, присущ каждому представителю этого класса.

В полной индукции вывод следует с необходимостью, а не с некоторой вероятностью вытекает из посылок. Эта «индукция» является, таким образом, разновидностью дедуктивного умозаключения, хотя по внешней форме напоминает индукцию.

Однако умозаключение полной индукции зачастую нереально с чисто практических условий. Например, нам нужно исследовать качество консервов, произведенных тем или иным предприятием в течение смены. Для этого пришлось бы открыть каждую банку и установить ее годность для продажи, но это означало бы, что всю партию консервов пришлось бы не пускать в продажу.

В силу последних обстоятельств (дороговизна метода, принципиальная невозможность воспользоваться методом) исследователь вынужден использовать метод неполной индукции.

Познавательная роль умозаключений полной индукции проявляется в формировании нового класса знания о классе или роде – это обобщение, представляющее собой новую ступень по сравнению с единичными посылками. Демонстративность полной индукции позволяет использовать этот вид умозаключений в доказательном рассуждении.

Особо необходимо сказать о таком способе умозаключений, как метод полной математической индукции.

Математическая индукция используется в математике, и ее также иногда называют полной индукцией. Она отличается от математической тем, что имеет дело с бесконечным множеством объектов, но сходна с ней, потому что, как и полная индукция, дает достоверный результат. Именно поэтому она применяется в математике для доказательства теорем.

Математическая индукция основывается на строении и свойствах натурального ряда чисел. Хотя натуральный ряд чисел бесконечен, он построен на очень простом законе: каждое следующее число больше предыдущего ровно на единицу. Это свойство натурального ряда позволяет доказывать общие утверждения, основанные на следующей процедуре.

Сначала мы доказываем, что требуемое нам свойство присуще первому члену натуральному ряду, числу единица, а затем показываем, что из предположения о том, что это свойство присуще некоторому произвольному числу, назовем его п, следует, что оно присуще и следующему за ним натуральному числу, т.е. п + 1. Таким образом, получаем способ доказательства присущности интересующего нас свойства для любого натурального числа.

Общая схема математической индукции выглядит так:

1. Пусть А – интересующее нас свойство натуральных чисел.

Тогда А имеет место при п = 1.

2. Из предположения о том, что свойством А обладает какое– либо натуральное число п, следует, что этим свойством А обладает и число п+1.

Следовательно, все п есть А.

Ни полная, ни математическая индукция не является индуктивным умозаключением в собственном смысле этого слова. И та, и другая всегда дают истинные заключения из истинных посылок и только лишь внешне напоминают индуктивные умозаключения.

Таким образом, вывод в умозаключении полной индукции носит демонстративный характер, т.е. при истинности посылок заключение в выводе будет необходимо истинным.

Основная функция индуктивных выводов в процессе познания —генерализация, т.е. получение общих суждений. По своему содержанию и познавательному значению эти обобщения могут носить различный характер — от простейших обобщений повседневной практики до эмпирических обобщений в науке или универсальных суждений, выражающих всеобщие законы.

История науки показывает, что многие открытия в микроэкономике были сделаны на основе индуктивного обобщения эмпирических данных. Индуктивная обработка результатов наблюдений предшествовала классификации спроса и предложения.

Индуктивным обобщениям обязаны многие гипотезы в современной науке.

Полнота и законченность опыта влияют на строгость логического следования в индукции, предопределяя, в конечном счете, демонстративность или недемонстративность этих умозаключений.

В зависимости от полноты и законченности эмпирического исследования различают два вида индуктивных умозаключений: полную индукцию и неполную индукцию. Рассмотрим их особенности.

Полная индукция

Полная индукция — это умозаключение, в котором на основе принадлежности каждому элементу или каждой части класса определенного признака делают вывод о его принадлежности классу в целом.

Индуктивные умозаключения такого типа применяются лишь в тех случаях, когда имеют дело с закрытыми классами, число элементов, в которых является конечным и легко обозримым. Например, число государств в Европе, количество промышленных предприятий в данном регионе, число нормальных предметов в этом семестре и т.п.

Представим, что перед комиссией поставлена задача проверить знания такой интереснейшей дисциплины как логика в группе 081521. Известно, что в его состав входят 25 студентов. Обычный способ проверки в таких случаях — анализ знаний каждого из 25 студентов. Если окажется, что все они знают предмет, то тем самым можно сделать обобщающее заключение: все студенты группы 081521 отлично знают логику.

Выраженная в посылках этого умозаключения информация о каждом элементе или каждой части класса служит показателем полноты исследования и достаточным основанием для логического переноса признака на весь класс. Тем самым вывод в умозаключении полной индукции носит демонстративный характер. Это означает, что при истинности посылок заключение в выводе будет необходимо истинным.

В одних случаях полная индукция дает утвердительные заключения, если в посылках фиксируется наличие определенного признака у каждого элемента или части класса. В других случаях в качестве заключения может выступать отрицательное суждение, если в посылках фиксируется отсутствие определенного признака у всех представителей класса.

Познавательная роль умозаключения полной индукции проявляется в формировании нового знания о классе или роде явлений. Логический перенос признака с отдельных предметов на класс в целом не является простым суммированием. Знание о классе или роде — это обобщение, представляющее собой новую ступень по сравнению с единичными посылками.

Демонстративность полной индукции позволяет использовать этот вид умозаключения в доказательном рассуждении. Применимость полной индукции в рассуждениях определяется практической перечислимостью множества явлений.

Если невозможно охватить весь класс предметов, то обобщение строится в форме неполной индукции.

Неполной индукцией

Неполной индукцией называется вид индуктивного умозаключения, в результате которого получается какой-либо общий вывод обо всем классе предметов на основании знания лишь некоторых однородных предметов данного класса.

Например:

Гелий имеет валентность, равную нулю;

Неон тоже;

Аргон тоже;

Но гелий, неон и аргон — инертные газы;

Все инертные газы имеют валентность, равную нулю.

Здесь общий вывод сделан обо всем классе инертных газов на основании знания о некоторых видах, т.е. части этого класса. Поэтому неполную индукцию иногда называют расширяющей индукцией, так как она в своем заключении содержит большую информацию, чем та, которая содержалась в посылках. Схема умозаключения неполной индукции такова:

A 1 имеет признак В;

А 2 имеет признак В;

А 3 имеет признак В;

Следовательно, и А 4 и вообще все А имеют признак В.

В неполной индукции на основании наблюдения некоторого количества известных фактов приходят к выводу, который распространяется и на другие факты или предметы данной области, еще неизвестные нам.

Неполная индукция выступает в двух видах.

-Неполная индукция, основанная на знании необходимых признаков и причинных связей предметов, явлений, — вид индуктивного умозаключения, в результате которого получается какой-либо общий вывод обо всем классе предметов на основании знания необходимых признаков и причинных связей лишь некоторых предметов данного класса.

-Неполная индукция через простое перечисление, в котором не встречается противоречащих случаев, — вид индуктивного умозаключения, в результате которого получается какой-либо общий вывод обо всем классе предметов на основании знания лишь некоторых предметов данного класса, при том условии, что не встречалось противоречащих случаев. Неполная индукция через простое перечисление дает нам возможность перейти от известных фактов к неизвестным, и этим самым с ее помощью мы расширяем наши знания о мире.

Но такая индукция не дает в заключении, в общем правиле достоверных выводов, а только приблизительные, вероятные. Ведь выводы в данном случае базируются на наблюдении далеко не всех предметов данного класса. И могло случиться, что противоречащий пример случайно не попался нам на глаза. А часто это бывает только потому, что мы еще плохо знаем исследуемую область явлений.

Железо — твердое тело;

Медь — твердое тело;

Цинк — твердое тело;

Золото — твердое тело;

Алюминий — твердое тело;

Железо, медь, цинк, золото, алюминий — металлы;

Все металлы — твердые тела.

Вывод сделан по методу индукции через простое перечисление, в котором не встречается противоречащих случаев. Исследован ряд металлов, а вывод сделан в отношении всех. В результате получился ошибочный вывод, так как, например, ртуть — металл, но она — жидкое тело.

Индукция через простое перечисление, принося известную пользу в нашей повседневной житейской практике, может применяться лишь на начальной ступени исследования, когда происходит процесс накопления фактического материала и совершается первый отбор нужных данных. Она называется популярной индукцией. Издавна популярная индукция считалась самым ненадежным видом неполной индукции. Вероятность ее заключения крайне слабо обоснована, так как единственное основание для ее вывода состоит в незнании случаев, которые противоречили бы ее заключению.

Заключение, полученное в результате такой индукции, постоянно находится под угрозой опровержения его истинности, стоит только обнаружиться противоречащему случаю, как это было с австралийскими черными лебедями, открытие которых опрокинуло державшееся столетиями утверждение, что все лебеди белые. В речевой коммуникации желательно пользоваться только полной индукцией, потому что неполная индукция действительно часто приводит к доказательству неверных тезисов.

  1. Основные ошибки индуктивных выводов.

Чем ближе исследованный образец ко всему классу, тем основательнее, а значит, и вероятнее будет индуктивное обобщение.

В условиях, когда исследуются лишь некоторые представители класса, не исключается возможность ошибочного обобщения. Примером этому может служить полученное с помощью популярной индукции и долгое время, бытовавшее в Европе обобщение «Все лебеди белые». Оно строилось на основе многочисленных наблюдений при отсутствии противоречащих случаев. После того как высадившиеся в Австралии в XVII в. европейцы обнаружили черных лебедей, генерализация оказалась опровергнутой.

Ошибочные заключения о выводах популярной индукции могут появиться по причине несоблюдения требований об учете противоречащих случаев, которые делают обобщение несостоятельным.

Ошибочные индуктивные заключения могут появляться не только в результате заблуждения, но и при недобросовестном, предвзятом обобщений, когда сознательно игнорируют или скрывают противоречащие случаи.

Некорректно построенные индуктивные сообщения нередко лежат в основе различного рода суеверий, невежественных поверий и примет вроде «дурного глаза», «хороших» и «дурных» сновидений, перебежавшей дорогу черной кошки и т.п.

Безошибочность вывода в индуктивном умозаключении зависит, прежде всего, от истинности посылок, на которых строится заключение. Если вывод основан на ложных посылках, то и он ложен. Ошибки в индуктивных умозаключениях очень часто объясняются также тем, что в посылках не учтены все обстоятельства, которые являются причиной исследуемого явления.

Но ошибки могут проникать в индуктивные выводы и тогда, когда посылки являются истинными. Это бывает в тех случаях, когда мы не соблюдаем правил умозаключения, в которых отображены связи единичного и общего, присущие предметам и явлениям окружающего мира. Первая ошибка, связанная с нарушением правил самого хода индуктивного умозаключения в связи с непониманием закона достаточного основания, известна издавна под названием «поспешное обобщение» (лат. fallacia fictae universalitatis ). Существо ошибки заключается в следующем: в посылках не учтены все обстоятельства, которые являются причиной исследуемого явления.

Еще более распространенной в индуктивных выводах является ошибка, также связанная с нарушением закона достаточного основания, которая называется ошибкой заключения по формуле: «после этого, стало быть, по причине этого» (лат. «Post hoc, ergo propter hoc»). Источник этой ошибки — смешение причинной связи с простой последовательностью во времени. Иногда кажется, что если одно явление предшествует другому, то оно и является его причиной. Но это не всегда так. Каждые сутки люди наблюдают, что за ночью следует день, а за днем — ночь. Но если бы на основании этого кто-нибудь стал утверждать, что ночь есть причина дня, а день — причина ночи, то тот оказался бы рассуждающим по формуле «после этого, стало быть, по причине этого». В самом деле, ни ночь не является причиной дня, ни день не является причиной ночи. Смена дня и ночи есть результат суточного вращения Земли вокруг собственной оси. Следовательно, неправомерно заключать о причинной связи двух явлений только на том основании, что одно явление происходит после другого.

Индуктивное доказательство применяется во всех науках, когда тезис является общим суждением. Вот пример индуктивного доказательства тезиса о том, что во всех треугольниках сумма внутренних углов равна двум прямым.

Аргументы: «в остроугольных треугольниках сумма внутренних углов равна двум прямым»; «в прямоугольных треугольниках сумма внутренних углов равна двум прямым»; «в тупоугольных треугольниках сумма внутренних углов равна двум прямым».

Рассуждение: «поскольку, кроме остроугольных, тупоугольных и прямоугольных треугольников, нет больше никаких треугольников, а во всех остроугольных, тупоугольных и прямоугольных треугольниках сумма внутренних углов равна двум прямым, то, следовательно, во всех треугольниках сумма внутренних углов равна двум прямым».

Существо такого доказательства заключается в следующем: надо получить согласие своего собеседника на то, что каждый отдельный предмет, входящий в класс предметов, отображаемый в общем суждении, имеет признак, зафиксированный в нем. Когда согласие на это получено, тогда с необходимостью вытекает истинность тезиса: раз каждый предмет в отдельности имеет этот признак, то естественно, что и все данные предметы имеют этот признак.

Резюмируя, следует сказать, что индуктивное доказательство выводит наличие некоторого свойства S у множества М, состоящего из n элементов, на основании того, что каждый из этих элементов обладает свойством S . Если мы хотим сделать заключение о целом множестве объектов (людей, предметов и т.д.), мы должны рассмотреть каждый элемент этого множества. А отсюда делается естественный и простой вывод: индуктивному доказательству подвергаются только те множества, которые имеют малое количество элементов. Если множество имеет бесконечное количество элементов, строгое индуктивное доказательство построить невозможно. Если количество элементов множества очень велико, но конечно, строгое индуктивное доказательство построить можно, но это очень трудоемкая, а потому обычно малоцелесообразная деятельность, так как каждый элемент в отдельности следует оценить с точки зрения наличия искомого признака. Поэтому строгое индуктивное доказательство распространяется только на так называемые маломощные множества (под мощностью множества понимается количество элементов, входящих в него). Множество мощностью 4 легко подвергается индуктивному доказательству, множество мощностью 100 — уже достаточно трудно, а множество мощностью 10000 почти не подвергается такому доказательству. Индуктивным способом невозможно доказать, скажем, тезис о том, что все москвичи умеют говорить по-русски. Но очень легко можно доказать тезис о том, что в определенной комнате нет ни одного битого стекла, если в этой комнате, скажем, два окна, каждое окно имеет четыре стекла (всего стекол, таким образом, восемь). Можно рассмотреть первое стекло — нет трещин. Рассмотреть второе стекло — нет трещин и т.д. Удостоверившись, что каждое стекло — целое, можно сделать общий вывод: в этой комнате нет ни одного битого стекла, что важно, например, в условиях надвигающейся зимы для принятия решения о замене стекол в помещении.

Наблюдения показывают, что индуктивное доказательство часто вызывает затруднение. Приведем два примера.

У комнатного цветка 20 листьев. Посмотрим на первый лист: он живой. Посмотрим па второй лист: он живой и т.д. Посмотрим на двадцатый лист: он живой. Значит, можно сделать вывод, что цветок жив. Это неправильно. Ведь если у цветка хотя бы один листик жив, то весь цветок является живым (приведено излишнее доказательство). В логике эта ошибка звучит так: «кто чрезмерно доказывает, тот ничего не доказывает» (лат. qui nimium probat , nihil probat ) — когда доказывается слишком много, из данных оснований следует не только тезис, но и какое-нибудь другое (иногда противоположное или ложное) положение.

Рассмотрим тезис: Семья Петровых — хорошая. Отец — академик. Мать — профессор. Дочь — очень способная девушка, аспирантка. Сын — подающий надежды молодой физик. Доказательство не получается, потому что хорошая семья — это семья, в которой сохраняются доброжелательные человеческие отношения. Чтобы доказать индуктивным способом искомый тезис, надо установить пары: мама — дочка, мама — сын, папа — дочка, папа — сын, сын — дочка, папа — мама. После этого проанализировать отношения в каждой паре, признать эти отношения благополучными и тогда сделать заключение, что это хорошая семья (и то это будет достаточно неубедительно). Гораздо легче доказать тезис: В семье Петровых все имеют высшее образование. А критерий быть хорошей не является формальным (это вопрос интерпретации), кроме того, слово хороший многозначно. Один человек, наблюдая семью, назовет отношения в ней прекрасными, другой сочтет неблагополучными. Семейные отношения бесконечно сложны: даже драка может быть свидетельством любви. Подобные тезисы лучше оставлять без доказательства. Их истинность или ложность докажет сама жизнь.

[ad01]

Рубрики: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *