Основы геологии

Авторы: Н.В.Короновский, А.Ф.Якушова

18.2. АБСОЛЮТНАЯ ГЕОХРОНОЛОГИЯ

Когда мы говорим об абсолютной геохронологии, то подразумеваем, возраст образования какой-либо горной породы в астрономических единицах времени — годах, продолжительность которых признается абсолютной, неизменной в масштабе времени. Проблема определения абсолютного возраста горных пород, продолжительности существования Земли издавна занимала умы геологов, и попытки ее решения предпринимались много раз, для чего использовались различные явления и процессы. Ранние представления об абсолютном возрасте Земли были курьезными. Современник М. В. Ломоносова французский естествоиспытатель Бюффон определял возраст нашей планеты всего лишь в 74 800 лет. Другие ученые давали различные цифры, не превышающие 400-500 млн. лет. Здесь следует отметить, что все эти попытки заранее были обречены на неудачу, так как они исходили из постоянства скоростей процессов, которые, как известно, менялись в геологической истории Земли. И только в первой половине XX в. появилась реальная возможность измерять действительно абсолютный возраст горных пород, геологических процессов и Земли как планеты. Эта возможность базировалась на открытии процесса радиоактивного распада неустойчивых изотопов целого ряда химических элементов. Поскольку этот физический процесс идет с постоянной скоростью и не зависит ни от каких внешних воздействий, мы получаем в руки «атомный часовой механизм», позволяющий измерять возраст интересующего нас геологического объекта. Так возник радиометрический метод определения абсолютного возраста горных пород, в основе которого лежит физическое явление радиоактивного распада изотопов 238U, 235U, 232Th, 40K, 87Sr, 14C, 3H и многих других. Все эти изотопы нестабильны и обладают вполне определенной, выявленной экспериментально скоростью распада, обычно характеризуемой периодом полураспада, т.е. временем, в течение которого распадается половина атомов данного нестабильного изотопа. Период полураспада сильно варьирует у различных изотопов (табл. 18.1). Период полураспада радиоактивного элемента известен и определение возраста заключается в том, чтобы найти отношение массы вновь образованного химического элемента к массе материнского изотопа. Радиометрический возраст должен определяться по минералам, содержащим радиоактивные элементы, при этом отсчет времени в «атомных часах» начинается сразу же после кристаллизации данного минерала, который все последующее время вел себя как замкнутая система и сохранял все продукты распада и то количество исходного материнского изотопа, которое осталось после распада. Кроме этого, мы должны быть уверенными в том, что ничто постороннее не попало в минерал за время, прошедшее с момента его образования.

В наши дни наука, занимающаяся определением абсолютного возраста минералов и горных пород, называется радиологией и в ее арсенале насчитывается много методов, которые постоянно совершенствуются и имеют конечной целью повышение точности определений.

Учитывая периоды полураспада, различные изотопы используются для определения возраста в разных временных диапазонах. Так, радиоактивный углерод 14С, образующийся в верхних слоях атмосферы в результате действия космических лучей на атом азота 14N, используется для определения возраста древесины, торфа и т.д. в пределах 50000 лет, что позволяет успешно применять его в четвертичной геологии и археологии. Большое влияние на отношение 14С/12С оказывают проводящиеся уже более 40 лет испытания атомного оружия, атомные реакторы и ускорители.

Изотопы с большим периодом полураспада с успехом применяются для определения возраста докембрийских пород, диапазон формирования которых превышает 3,5 млрд. лет. Используются уран-свинцовый, торий- свинцовый, свинец-свинцовый, калий-аргоновый, рубидий-стронциевый, самарий-неодимовый и другие методы, каждый из которых имеет свои достоинства и недостатки. Проблемы возникают с калий-аргоновым методом, основанным на переходе нестабильного изотопа 40К при условии захвата электрона в стабильный 40Аr или 40Са, если при этом испускается отрицательно заряженная бета-частица (свободный электрон с большой скоростью). В результате термального прогрева породы часть аргона улетучивается и поэтому возраст породы как бы «омолаживается», фиксируя момент прогрева, но не время образования данной породы. Калий-аргоновый метод стал применяться одним из первых и именно ему мы обязаны в значительной мере шкалой геологического времени, хотя известны и многочисленные случаи ошибочных определений, нуждающихся в геологической корректировке.

Уран-свинцовый метод, как и рубидий-стронциевый, применяется для определения возраста в диапазоне от 100 млн. лет до 5 млрд. лет. При этом содержание изотопов устанавливается с помощью масс-спектрометров, где атомы изотопов, будучи пропущенными, в вакууме через магнитное поле, разделяются с учетом их относительной массы. Важное значение имеет взаимная проверка определений разными методами, данные которых в случае их совпадения лежат на кривой распада — «конкордии». Чтобы уменьшить вероятность ошибок определения возраста, его проводят по так называемым «валовым пробам», т.е. используя всю породу, а не какой-либо минерал отдельно, хотя последний способ также применяется.

Для правильного понимания абсолютной геохронологии кроме взаимного контроля разными методами необходимо проводить контроль геологическими данными, без которого, принимая результаты определения абсолютного возраста за кажущуюся истину, можно сделать ошибочные выводы. Как уже говорилось, радиометрические методы особенно важны для докембрийских образований, формировавшихся в течение очень длительного времени и лишенных палеонтологических остатков. В то же время для фанерозойских отложений данные определения абсолютного возраста горных пород позволяют установить продолжительность главных подразделений международной геохронологической шкалы, разработанной на основе других принципов.

|

В этом году 110 лет исполнилось бы Уилларду Франку Либби — физику-химику, который изобрел свой метод для определения возраста археологических находок. Это открытие настолько изменило науку, что Либби в 1955 году появился на обложке журнала Time — в один год с Никитой Хрущевым, Дуайтом Эйзенхауэром, Фрэнком Синатрой и принцессой Великобритании Маргарет.

Фото: colubmia.edu

Через пять лет Либби за его открытие присудили Нобелевскую премию. Официальная формулировка — «за введение метода использования углерода-14 для определения возраста в археологии, геологии, геофизике и других областях науки». Ученый высказывался о победе аккуратно: «Сам по себе метод датирования требует осторожности, но его может применять тщательно обученный персонал, соблюдающий чистоту, аккуратность, серьезный подход и обладающий соответствующими практическими навыками». Но если все это соблюсти, то «метод действительно может помочь перелистать назад страницы истории и рассказать человечеству несколько больше о его предшественниках — и о его будущем». О чем идет речь?

Все едят углерод-14

Новости о найденных древних артефактах появляются достаточно часто. Например, на археологических раскопках обнаружили кусок деревянного инструмента, а археолог делает вывод, что ему 5 тыс. лет. Или на раскопках нашли мумию ребенка и смогли понять, что он жил около 2 тыс. лет назад. Откуда ученые знают, сколько лет настолько древнему объекту или человеческим останкам? Скорее всего, они применили радиоуглеродное датирование. Оно используется в датировке таких вещей, как кости, ткани, древесина и растительные волокна.

Либби опирался на то, что углерод состоит из трех изотопов — двух стабильных и одного радиоуглерода. При этом последний постоянно образуется в атмосфере после реакции атомов азота с нейтронами, которые есть в космических лучах. Радиоуглерод попадает в оборот углерода в атмосфере, биосфере и гидросфере. Углерод-14 радиоактивен, с периодом полураспада около 5 700 лет. Это значит, что за 5 700 лет распадется половина этого вещества.

После попадания в атмосферу он превращается в углекислый газ, который потребляют растения в процессе фотосинтеза. Животные, включая человека, потребляют много растений (и животных, которые потребляют растения) — так углерод-14 попадает внутрь всех существ. Он сохраняется в живых организмах до тех пор, пока они живут. Когда они умирают, количество углерода-14 больше не пополняется. Теперь довольно просто определить, сколько всего атомов углерода должно быть в образце, учитывая его вес и химический состав. Зная период распада вещества, мы можем посчитать количество углерода-14 и выяснить, когда организм погиб, и примерное время его жизни.

Как образуется углерод-14.

Однако не все так просто: этот метод действует только для предметов, которые жили в определенный период. Представьте, что у ученого есть килограмм радиоактивного изотопа с периодом полураспада в пять минут. Через пять минут от него останется 500 г, еще через пять минут — 250 г. Через десять таких периодов ученому нечего будет измерять. Для радиоактивного анализа этот период — примерно 40–60 тыс. лет, после этого определить возраст объекта уже будет невозможно.

Когда закончился Ледниковый период

Чтобы проверить эту методику, группа Либби применила метод к образцам, возраст которых уже был известен. В числе первых испытуемых объектов были образцы сосны и кипариса, возраст которых был известен благодаря годичным кольцам. Они также взяли артефакты из музеев — например, кусок древесины из погребальной ладьи египетского фараона Сенусерта III. Возраст предмета они знали благодаря погребальной записке. Результаты оказались точными.

Египетская погребальная ладья. Фото: bluffton.edu

Правда, проверяя на радиоактивность останки животных и растений, получаемые со всего мира — от Северного полюса до Южного, Либби обнаружил некоторое расхождение в данных, связанное с географической широтой. Среди археологических находок, датированных с помощью метода Либби, были кусочки льняной ткани, которыми были перевязаны манускрипты, найденные в районе Мертвого моря, хлеб из дома в Помпеях, погребенных под вулканическим пеплом, древесный уголь со стоянки древних людей в Стоунхендже и кочерыжка кукурузного початка из пещеры в Нью-Мехико.

Эта методика упростила жизнь ученым по всему миру. В XIX и начале XX века терпеливые археологи для того, чтобы понять возраст предметов, связывали керамические и каменные инструменты в разных географических районах сходством формы и рисунка. Затем, используя идею о том, что стили объектов развиваются, становясь все более сложными с течением времени, размещали их по предположительному таймлайну.

Их подход был не совсем точен. Когда появилось радиоуглеродное датирование, многие исследователи изменили свое представление о возрасте объектов. К примеру, раньше существовало убеждение, что цивилизация зародилась в Европе и распространилась по всему миру. Датируя артефакты из Европы, Америки, Азии, Африки и Океании, археологи установили, что цивилизации развивались во многих независимых местах. Поскольку археологи тратили меньше времени на определение возраста артефактов, они могли задавать больше вопросов об эволюции человеческого поведения в доисторические времена.

Работа Либби также внесла большой вклад в геологию. Используя образцы древесины деревьев, когда-то погребенных под ледниковым льдом, команда ученого доказала, что последний ледяной покров в Северной Америке отступил от 10 до 12 тыс. лет назад, а не 25 тыс. лет назад, как ранее подсчитали геологи.

Артефакты или подделки

Таким образом определили возраст множества объектов, но один из самых известных случаев — это радиоуглеродный анализ Туринской плащаницы — четырехметрового льняного полотна, в которое, по преданию, после смерти Иисуса Христа завернули его тело. Однако католическая церковь не признает плащаницу подлинной, а православная не имеет официальной позиции по этому поводу. Большинство ученых считают, что плащаница — фейк.

Туринская плащаница

Для его анализа от объекта нужно было взять довольно большой кусок, сжечь его, а потом проанализировать останки, чему противилась церковь. Однако в 1970-е эта надобность отпала, потому что появилась «ускорительная масс-спектрометрия» — теперь для анализа образца достаточно и грамма материала, потому что ученые могут считать число изотопов, а не ориентироваться на период распада. Семь лабораторий подготовили свои рекомендации по поводу правильности эксперимента и от плащаницы взяли кусок в 7 кв. см и весом в 50 мг. Ученые из-за особенностей радиоуглеродного анализа отмечали, что после исследования им будет известен не возраст предмета, а возраст материала — льна, из которого он сделан, но в этом случае это было не так принципиально. Три разные лаборатории обнародовали свои результаты по возрасту плащаницы — однако они были примерно одинаковыми. Специалисты лабораторий решили, что возраст плащаницы 691 ± 31 год, а дата изготовления находится между 1275 и 1381 годами.

В датировании древних памятников не обошлось без разоблачения подделок. Один из первых образцов из Древнего Египта, который подвергся радиоуглеродному анализу, оказался современной подделкой. Еще один пример — датирование пилтдаунского «человека» из Англии: ожидаемый возраст ученых был около 75 тыс. лет, а реальный — 600 лет. Останкам «Ноева ковчега» же было 1200–1400 лет, а не 5 тыс.

Пилтдаунский человек — одна из самых известных мистификаций XX века. Костные фрагменты — часть черепа и челюсть, обнаруженные в 1912 году в гравийном карьере Пилтдауна — Восточный Сассекс, Англия, были представлены как окаменелые останки ранее неизвестного древнего человека — «недостающего звена» в эволюции между обезьянами и человеком. В течение 40 лет образец оставался объектом споров, пока в 1953 году искусную подделку все же не разоблачили и не установили, что это череп полностью развитого современного человека, намеренно соединенный с немного подпиленной нижней челюстью орангутана и обработанный бихроматом калия для имитации древней окраски. Вопрос об авторстве мистификации еще до конца не решен, но главным подозреваемым считается адвокат и археолог-любитель Чарльз Доусон.

Череп Пилтдаунского человека

Радиоуглеродное датирование также использовалось для вычисления времени вымирания шерстистого мамонта и внесло свой вклад в дискуссию о том, жили ли современные люди и неандертальцы на Земле в одно время. Несмотря на годы работы, а также открытие, которое перевернуло очень многие представления об истории Земли, Либби скажет, что датирование появилось во многом благодаря удаче.

Cейчас радиоуглеродное датирование используется постоянно — ученые датируют захоронения, останки людей, предметы и наскальные рисунки. Хотя существуют другие методы датирования объектов: например, полеомагнитный, когда измеряется остаточная намагниченность предметов; трековое — путем подсчета количества урана; термолюминесцентное датирование — когда измеряется количество радиоактивного излучения, которому подвергался предмет. Еще одна альтернатива радиоуглеродному датированию стоит особняком — для определения возраста предмета по электронному спиновому резонансу разрушать или деформировать его нужно, ученые замеряют излучающие радиацию дефекты или плотность захваченных электронов.

Но сейчас принято считать, что радиоуглеродное датирование — самый точный метод, который может позволять определить периодизацию предметов из прошлого, а не решить более глобальные вопросы — например, определение возраста Земли. Однако некоторые ученые сетуют на то, что этот метод нельзя использовать для датирования, потому что, по их опыту, он неточный.

Правда, оно скоро может стать неактуальным. Дело в том, что объекты, которые умерли в 1940-е годы и дальше, будут иметь другое соотношения углерода-14. В этот период взрывы ядерных бомб, работы реакторов и испытания поменяли количество поглощаемого вещества. К тому же, на исследования влияют климатические изменения — уровень выбросов ископаемого топлива искажает соотношение углерода в материале, и исследователи могут неправильно интерпретировать результаты датирования, но к 2020 году этот вопрос встанет еще острее.

Возражая скептикам, сторонники метода радиоуглеродного датирования детально описывают всевозможные процедуры очистки образцов и способы измерений концентрации 14С в этих образцах, а также результаты длительных исследований по изменению концентрации 14С в атмосфере Земли, лежащих в основе калибровочной кривой. В качестве дополнительного аргумента часто упоминается широкое международное сотрудничество лабораторий в последние десятилетия, мировая стандартизация процедур радиоуглеродных исследований и периодическая согласованная корректировка калибровочных кривых.

При всем этом однако «почему-то» скромно обходится молчанием вопрос, а какова же все-таки общая погрешность метода радиоуглеродного датирования?..

Международная стандартизация и межлабораторное сотрудничество может помочь избежать преднамеренных фальсификаций и непредумышленных ошибок. Но они абсолютно бессильны против погрешностей метода, сидящих в самой его основе.

Точность измерения текущего содержания 14С в исследуемом образце, конечно же, чрезвычайно важна. Но ведь погрешностью этих измерений (как и погрешностью в определении периода полураспада) общая погрешность методики не исчерпывается.

Достоверность кривой содержания 14С в атмосфере планеты также важна. Но ведь это — прямая задача, а нас интересует здесь прежде всего решение обратной (!) задачи — задачи датировки образцов-артефактов.

Вот мы и займемся (в качестве незаинтересованной стороны) оценкой погрешности метода радиоуглеродного датирования…

Будем полагать, что измеряющая лаборатория предприняла все возможные усилия для качественной очистки образца; выделения наиболее надежной фракции; учета влияния в период предыстории образца внешних факторов и учета искажений в ходе лабораторно-измерительных процедур.

В соответствующей общедоступной литературе, к сожалению, отсутствуют какие-либо количественные оценки погрешностей, возможных в ходе вышеуказанных процедур. Имеют место лишь рассуждения о сложности такой оценки и о непрерывном совершенствовании лабораторных технологий. Поэтому мы здесь не будем «кровожадничать» и, памятуя о «презумпции невиновности», будем считать соответствующие погрешности равными нулю, давая таким образом сторонникам метода определенную фору.

Для начала используем некоторые данные, встречающиеся в литературе по радиоуглеродному датированию.

1. Погрешность, обусловленная неточным знанием периода полураспада и погрешностью его измерения, невелика. Погрешность в периоде полураспада около 0,5% и погрешность измерения того же порядка. Суммарная погрешность будет около 0,7% (см. В.Левченко, «Радиоуглерод и абсолютная хронология: записки на тему»).

2. Погрешность в определении содержания 14С.

«Точности измерения содержания радиоуглерода в образцах весьма высоки. Для ускорительной масс-спектрометрии обычным являются измерения на уровне 0.5-1% В особых случаях возможно и лучше. Для радиометрических методов обычным уровнем являются 0.3-0.7%, а некоторые серии измерений были проведены и с 0.1% точностью» (там же).

Сотрудники, например, лаборатории Beta Analytic Inc в своих рекламных проспектах более скромны и называют в качестве типичной погрешность в пределах 0,5-3%. В этот диапазон в целом укладываются и результаты, представляемые другими лабораториями. Но мы и здесь не будем «кровожадничать» и примем величину данной погрешности равной 0,5%.

3. Со следующей погрешностью, обусловленной естественными флуктуациями начального содержания радиоуглерода, придется повозиться…

Постников приводит следующие данные:

«Третья гипотеза Либби состоит в том, что содержание радиоуглерода в организме одно и то же для всех организмов по всей Земле (т.е. не зависит, скажем, от широты и породы растения). С целью проверить эту гипотезу Андерсен (Чикагский университет), проведя тщательные измерения, получил, что на самом деле содержание радиоуглерода, как и следовало ожидать, колеблется от 14,53 ± 0,60 до 16,31 ± 0,43 распадов на грамм в минуту. Это дает отклонение содержания радиоуглерода от среднего значения на ± 8,5%».

Более подробные результаты этих измерений представлены в таблице ниже (из первоисточника я опустил лишь последнюю строку про тюлений жир, дабы остались только деревья).

Таблица 1

Необходимо сразу же отметить, что отклонение данных таблицы от среднего значения составляет вовсе не 8,5%, а всего лишь 5,85%. То ли это ошибка самого Постникова, то ли ошибка верстки текста, при которой была потеряна первая цифра, а запятая передвинулась на разряд…

Полемизируя с Постниковым, Левченко (в статье «О «радиоуглероде глазами Фоменко» и «научных» основах Новой Хронологии: полемические заметки») пишет:

«В описании радиоуглеродного метода обсуждены причины, приводящие к отклонениям в содержании радиоуглерода в организмах. Это и изотопное фракционирование в растениях, причем различное, зависящее от внешних условий и вида, это и резервуарный эффект для морской биоты, это и Зюсс-эффект, сдвинувший равновесное атмосферное значение. Сейчас мы знаем, как учесть различные эффекты, скорректировать получаемые значения. Но в 50-х годах, времени младенчества радиоуглеродного метода, все это еще просто не было известно. Неудивительно, что был получен разброс. Да и то, правда не очень большой. Особенно если принять во внимание несовершенство тогдашних методов подготовки образца, химической обработки, да и ошибок самого измерения — 4% только оттуда получаются».

Еще раз подчеркну, что я очень далек от того, чтобы быть сторонником взглядов Фоменко, но в данном случае вынужден вступиться за г-на Постникова.

Во-первых. Г-н Левченко оценивает погрешность измерений 50-х годов в 4% (эта цифра фигурирует и в других его работах). Спору нет: 4% — точность куда хуже, чем 0,3-0,5%. Однако г-н Левченко почему-то «не заметил», что в данных, приводимых г-ном Постниковым (как в тексте, так и в таблице), присутствует такой знак как «±» !?. И любой знающий арифметику может убедиться, что значение после знака «±» составляет как раз около тех самых 4% от величины, стоящей перед этим знаком. Так что погрешность в 4% никто и не скрывал!.. Но ведь наличие этой погрешности измерений (честно отраженной в таблице и в тексте) вовсе не объясняет разброса самих данных.

Во-вторых. Какое отношение к данному случаю может иметь «резервуарный эффект для морской биоты»?!. Речь ведь идет о разбросе данных для «сухопутных» деревьев (хотя я опустил строку про тюлений жир, но она была всего одна, а все остальные данные относятся именно к деревьям). А они демонстрируют разброс данных одного порядка величины вне зависимости от удаленности от океана. Оно и понятно, — ведь атмосфера Земли обладает весьма высокой степенью перемешиваемости, довольно быстро уравнивая условия по 14С в разных регионах. (Этот факт Левченко использует в качестве аргумента в других местах своих работ, но почему-то «забывает» про него в данном конкретном случае. Нечего сказать: «хороши» методы полемики!..)

В-третьих. «Зюсс-эффект, сдвинувший равновесное атмосферное значение» также здесь абсолютно не причем. (Для тех, кто не в курсе: Зюсс-эффект заключается в изменении содержания 14С в атмосфере Земли в последние пару столетий вследствие воздействия человеческого фактора — сокращения площади лесов и массового сжигания ископаемого топлива.)

Был бы понятен аргумент Левченко, если бы сравнивались образцы до и после проявления Зюсс-эффекта. А в данном случае речь идет о сравнении данных по деревьям, растущим в одно и то же время!.. Так что и этот «контрдовод» Левченко мы с полным основанием имеем право отбросить.

И в-четвертых… Остался последний аргумент: изотопное фракционирование. Здесь нам придется сделать небольшое отступление, дабы объяснить непосвященному читателю «что это за штука, и с чем ее едят»…

Как уже упоминалось, углерод встречается в природе в виде трех основных своих изотопов: 12С, 13С и 14С. В ходе эмпирических исследований было обнаружено, что при переходе углерода из одного места в другое (например, из воздуха в растение при фотосинтезе) пропорции между содержанием различных изотопов могут изменяться. В результате: отношение, скажем, 13С/12С в атмосфере одно; в растениях — другое; в раковинах моллюсков — третье и т.д. (даже несмотря на то, что оба изотопа стабильны). Этот эффект и назвали изотопным фракционированием.

В настоящее время в качестве причины изотопного фракционирования называют влияние массы изотопа на скорость протекания (био)химических реакций. И исследования как особенностей, так и самой природы эффекта активно ведутся сразу по массе направлений…

Поскольку изотопное фракционирование нарушает не только соотношение 13С/12С, но и 14С/12С, постольку возникает необходимость его учета. Делается это следующим образом.

Измеряют в образце соотношение 13С/12С и определяют его отклонение от международного стандарта (т.н. PDB-стандарт). Для того, чтобы было возможно прямое сравнение радиоуглеродных измерений для различных образцов, их все приводят к стандартному изотопному сдвигу в -25 permill (1 permill = 1о/оо = 0,001 = 0,1%), т.е. пересчитывают по формуле:

Ррасч (14С) = Ризм (14С) — 2.. о/оо

Величина стандарта в -25 о/оо была выбрана по той простой причине, что величины в ее окрестности весьма характерны для большинства деревьев, а древесина и связанные с ней вещи представляют большинство радиоуглеродных образцов (Левченко).

К сожалению, мне не удалось найти в доступной литературе какого-либо обоснования данной формулы. Судя по всему, она имеет эмпирический характер. А поскольку любая формула в таких случаях является лишь неким приближением к реальным эмпирическим данным, то возникает возможность соответствующей ошибки, — в данном случае непосредственно выливающуюся в дополнительную погрешность датировки. Кроме того, в эту же погрешность вносит (согласно данной формуле) свой вклад и погрешность лабораторного определения концентрации 13С. Это — теоретически…

Практически же оценка этой погрешности по существующим в природе величинам изотопного сдвига 13С дает пренебрежимо малые значения. (Здесь мне хотелось бы поблагодарить за помощь в поиске необходимой для проведенной оценки информации участников форума , который был рекомендован г-ном Левченко для обсуждения его работ. Помощь, которую они мне оказали, даже не подозревая ничего о том, в каких целях я ее использую далее.)

Однако данная формула позволяет нам получить один немаловажный вывод, для которого воспользуемся следующей цитатой Левченко:

«При переходе углекислого газа через барьер в устьицах растений и в фотосинтетической реакции происходит изотопное фракционирование. Причем величина этого фракционирования зависит от растения, условий роста, температуры, влажности и т.д. Растения предпочитают легкие изотопы… Величина фракционирования измеряется в сдвиге изотопного отношения 13/12 изотопов по сравнению со эталоном — мировым стандартом. Так в атмосфере эта величина примерно -7.4 промилле (а до Зюсс эффекта была в районе -6.5 промилле). В растениях же, глюкозе и целлюлозе эта величина разная от -12 до -30 промилле. Причем растения делятся на две группы: C4 и C3 по величине фотосинтетического фракционирования. В первой эта величина лежит в районе -12 ¸ -19 промилле, а во второй -21 ¸ -29 промилле. Типичная величина для деревьев около -25 промилле» («Радиоуглерод и абсолютная хронология: записки на тему»).

И теперь мы можем использовать приводимые г-ном Левченко данные против его же аргументов.

Дело в том, что для результатов Андерсена (вышеприведенная таблица) последняя скобка в уравнении учета изотопного фракционирования — — пренебрежимо мало отличается от единицы. Что, впрочем, не удивительно, — ведь речь идет о современных деревьях, в которых сдвиг по 14С мал…

Тогда учет изотопного фракционирования в данных Андерсена даст:

Ррасч (14С) -Ризм (14С) = — 2. о/оо

Заметим, что здесь я опять-таки даю г-ну Левченко очень серьезную фору, поскольку «типичная величина для деревьев около -25 промилле», а данные Андерсена относятся именно к деревьям!.. Но не будем «мелочиться», — пусть будет 2,6%. И даже в этом случае из данных Андерсена следует, что «естественные биологические флуктуации содержания радиоуглерода, остающиеся после поправки на изотопное фракционирование» (как их именуют в соответствующей литературе), составляют никак не меньше 5,85 — 2,6 = 3,25 процента!!!

И это — лишь для самого «идеального» варианта: когда поправка по 13С максимальна; т.е. в реальных экспериментах погрешность заведомо больше!..

Примечание:

После публикации первого варианта данной статьи (в котором обнаружились ошибки, вследствие чего он был снят) мне как-то бросили упрек в том, что я использую достаточно устаревшие данные Андерсена. Дескать, можно было бы найти и что-то поновее…

Честное слово: я очень старался… Но и тогда, и сейчас так и не смог найти хоть одну работу, где бы пытались опровергнуть или проверить данные Андерсена. Увы… Исследователи старательно обходят стороной данную задачу, хотя, казалось бы, что может быть проще исследования современных образцов. Свою точку зрения на причины столь странной позиции исследователей я выскажу позже, а здесь лишь приведу один пример, который мне все-таки удалось найти в сети.

В одном из исследований (Horowitz и др., 1978) проводилась датировка фрагментов скорлупы страусиных яиц. Вместе с ископаемыми фрагментами были проведены измерения и для двух современных образцов, которые (уже после проведенной корректировки по 13С на изотопное фракционирование!) показали возраст… 200 лет! Конечно, исследователи дали вполне разумное объяснение данному факту, предположив потребление страусами воды, обедненной радиоуглеродом. Но нам важно здесь не объяснение результата (которое в данном случае носит характер прямой задачи), а сам факт его погрешности. Ведь это — не что иное, как погрешность в определении начального содержания радиоуглерода при обратной задаче!.. И как видно, данная погрешность оказалась в этом случае очень и очень близка к упомянутому выше значению в 3,25% погрешности, неустранимой поправкой по 13С…

Первоисточник: Скляров А.Ю. Чего изволите-с?.. Меню радиоуглеродного датирования и дендрохронологии.

Четвертичный период, охватывающий приблизительно последние два миллиона лет, характеризуется драматическими изменениями в природе, известными как «ледниковый период». В последние годы был достигнут значительный прогресс в корректном датировании событий той эпохи.
В книге описан широкий спектр физических и химических методов, имеющихся в арсенале современной науки, для определения возраста молодых геологических образцов и артефактов. Для русского издания книга была дополнена главами, в которых более подробно освещены радиоуглеродный и термолюминесцентный методы, дендрохронология, а также приведены примеры комплексных датировок археологических находок.
Монография адресована студентам и ученым, однако представляет несомненный интерес и для широкого круга читателей, желающих получить представление об истории нашей планеты, а также обрести твердую опору среди широко пропагандируемых паранаучных идей креационизма, катастрофизма и «новой хронологии».

В последние десятилетия обозначился существенный прогресс в методах датирования четвертичного периода, который покрывает приблизительно последние два миллиона лет. С одной стороны, это связано с потребностью получения достоверных хронологических концепций периода, в котором произошли радикальные изменения в окружающей среде и появился вид Homo. С другой стороны, развитие технологии и инструментов, например появление высокочувствительной техники аналитических измерений, привело к появлению новых подходов в области физического и химического датирования. Быстрое развитие методологии продолжается и в настоящее время.

Специалистам становится все сложнее разобраться в тонкостях широкого спектра хронометрических методов, приложимых к молодым породам и артефактам. Поэтому моя цель состояла в том, чтобы представить полный обзор современного состояния этих методов. Книга построена в основном таким образом, чтобы помочь ученым, у которых могут появиться задачи, связанные с датированием на рассматриваемом временном интервале, т.е. геологам, занимающимся четвертичным периодом, и археологам самого широкого профиля. Поскольку книга стала развитием курса лекций, читаемого студентам геологических и археологических специальностей в Гейдельбергском университете, она, безусловно, может служить пособием для изучающих эти дисциплины. Более того, она предназначена всем тем, кто интересуется вопросами, связанными с временными записями доисторических эпох и палеоэкологическими сдвигами ледникового периода. Хронометрические методы имеют в основном химические или физические основания, а используются для решения вопросов геологии и археологии. Такое мультидис-циплинарное сочетание может быть успешным лишь в том случае, если исследователь имеет четкое понимание проблемы и понимание возможностей методов. И наоборот, кроме знания подходящих к данному типу материала методик датирования, пользователь должен быть способен к критической интерпретации данных. Вследствие междисциплинарного характера я пытался изложить предмет как можно более понятно.

Радиоуглеродный (также упоминается как датирования или углерод-14 знакомство ) представляет собой способ определения возраста объекта , содержащий органический материал , используя свойство радиоуглерода , радиоактивный изотоп углерода .

Этот метод был разработан в конце 1940 — х годов в университете Чикаго по Уиллард Либби , который получил Нобелевскую премию по химии за свою работу в 1960 г. Он основан на том факте , что радиоуглеродный (14
В ) постоянно создается в атмосфере за счет взаимодействия космических лучей с атмосферным азотом . Результирующий14
C соединяется с кислородом воздуха с образованием радиоактивного углекислого газа , который попадает в растения путем фотосинтеза ; животные затем приобретают14
C. съедая растения. Когда животное или растение умирают, они перестают обмениваться углеродом с окружающей средой, и после этого количество14
C, который он содержит, начинает уменьшаться по мере того, как14
C подвергается радиоактивному распаду . Измерение количества14
C в образце из мертвого растения или животного, такого как кусок дерева или фрагмент кости, предоставляет информацию, которую можно использовать для расчета времени гибели животного или растения. Чем старше образец, тем меньше14
С там должен быть обнаружен, и потому , что период полураспада от14
C (период времени, по истечении которого половина данного образца распадется) составляет около 5730 лет, самые старые даты, которые можно надежно измерить с помощью этого процесса, составляют примерно 50000 лет назад, хотя специальные методы подготовки иногда позволяют точно анализировать более старые образцы.

Исследования продолжаются с 1960-х годов, чтобы определить, какая доля 14
C в атмосфере находился в течение последних пятидесяти тысяч лет. Полученные данные в виде калибровочной кривой теперь используются для преобразования заданного измерения радиоуглерода в образце в оценку календарного возраста образца. Необходимо внести другие поправки, чтобы учесть долю14
C в разных типах организмов (фракционирование) и различных уровнях14
C по всей биосфере (эффекты резервуара). Дополнительные сложности возникают из-за сжигания ископаемого топлива, такого как уголь и нефть, а также из-за наземных ядерных испытаний, проведенных в 1950-х и 1960-х годах. Поскольку время, необходимое для преобразования биологических материалов в ископаемое топливо , значительно больше, чем время, необходимое для его14
C распадаться ниже обнаруживаемого уровня, ископаемое топливо почти не содержит14
C , и в результате произошло заметное падение доли14
C в атмосфере начала конца 19 века. И наоборот, ядерные испытания увеличили количество14
C в атмосфере, которая достигла максимума примерно в 1965 году, почти вдвое больше, чем до начала испытаний.

Изначально измерение радиоуглерода производилось с помощью бета-счетных устройств, которые подсчитывали количество бета-излучения, испускаемого при распаде14
Атомы C в образце. В последнее время предпочтительным методом стала масс-спектрометрия на ускорителе ; он считает все14
Атомы углерода в образце, а не только те несколько атомов, которые распадаются во время измерений; поэтому его можно использовать с гораздо меньшими образцами (размером с отдельные семена растений) и получить результаты намного быстрее. Развитие радиоуглеродного датирования оказало глубокое влияние на археологию . Помимо более точного датирования археологических памятников, чем предыдущие методы, он позволяет сравнивать даты событий на больших расстояниях. Историки археологии часто называют ее влияние «радиоуглеродной революцией». Радиоуглеродное датирование позволило датировать ключевые переходы в предыстории, такие как конец последнего ледникового периода и начало неолита и бронзового века в различных регионах.

[ad01]

Рубрики: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *