Законы преобразования алгебры логики.

Наиболее простые и необходимые истинные связки между мыслями выражаются в основных законах формальной логики. Таковыми являются законы тождества, непротиворечия, исключенного третьего, достаточного основания.

Эти законы являются основными потому, что в логике они играют особо важную роль, являются наиболее важными. Они позволяют упрощать логические выражения и строить умозаключения и доказательства. Первые из вышеперечисленных законов были выявлены и сформулированы Аристотелем, а закон достаточного основания — Г. Лейбницем.

Закон тождества: в процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе.

Закон непротиворечия: невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении. То есть невозможно что-либо одновременно утверждать и отрицать.

Закон исключенного третьего: из двух противоречащих суждений одно истинно, другое ложно, а третье не дано.

Закон достаточного основания: всякая истинная мысль должна быть достаточно обоснована.

Последний закон говорит о том, доказательство чего-либо предполагает обоснование именно и только истинных мыслей. Ложные же мысли доказать нельзя.

Формулы этого закона нет, так как он имеет только содержательный характер.

При решении логических задач часть приходится упрощать формулы. Упрощение формулы в булевой алгебре производится на основе эквивалентных преобразований, опирающихся на основные логические законы.

В алгебре высказываний логические законы выражаются в виде равенства эквивалентных формул.

Среди законов особо выделяются такие, которые содержат одну переменную.

Основными законами являются четыре:

Формальная логика — это широкая область логических исследований, изучающая идеализированные рассуждения и их системы посредством логических исчислений на основе метода формализации (см. Формализация). Метод формализации подразумевает, что логические рассуждения изучаются в отвлечении от их конкретного содержания; при этом сами логические рассуждения формулируются на некотором точном (формализованном) языке при помощи специального аппарата символов (см. Язык формализованный). Такие точные языки имеют две составляющие: синтаксис (см. Синтактика) и семантику (см. Семантика). Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет. Формализованный язык позволяет избежать двусмысленной и логической неясности естественного языка, которым пользовалась при описании рассуждений традиционная логика (см. Логика), развивавшаяся в рамках философии (см. Философия). Методы формализации дали логике такие преимущества, как высокая точность формулировок, возможность изучения более сложных, с точки зрения логической формы, объектов. Определение «формальная логика» было введено И. Кантом с намерением подчеркнуть её ведущую особенность в подходе к изучаемым объектам и отграничить её тем самым от других возможных логик.

Способность человеческого мышления к конструктивной языковой деятельности порождает возможность оперировать следующими логическими формами: понятиями, суждениями, умозаключениями, которые представляют собой пространство логических исследований. В качестве наиболее сложного вида логических форм иногда выделяют и теории (см. Теория). Часто эту последовательность воспринимают как некую структурную иерархию. Понятие объявляется наиболее простой из форм мышления, суждение представляется как система понятий, умозаключение как система суждений, а теория как система умозаключений. Эта иерархия недостаточно ясна, и её обоснования порой легко подвергаются критике, однако она часто используется в качестве удобной схемы изложения предметной области формальной логики, что, собственно, подкрепляется многовековой традицией преподавания этой дисциплины. Эти логические формы и лежащие в основе операций с ними законы и принципы, то есть так называемый логический аппарат, составляют основную область исследований формальной логики, а выработка самих эффективных логических аппаратов — её основную цель.

В связи с различием логических форм выделяют два основных направления формальной логики:

  1. Концептуальный анализ, то есть исследование процедур определения языковых терминов (понятий) и формулировка принципов отношений между ними. Это направление включает в себя широкий спектр теорий, от классификации родо-видовых отношений до конструирования концептуальных «полей».
  2. Теория вывода, то есть анализ рассуждений, формализация законов и принципов связи высказываний (суждений) в умозаключениях. Здесь формулируются способы корректного получения суждения, называющегося заключением, из некоторых исходных суждений, называющихся посылками, посредством рассуждения. В рамках теории вывода выделяют логику, рассматривающую дедуктивные рассуждения (см. Дедукция), то есть определённые способы доказательств, и логику, занимающуюся правдоподобными рассуждениями: индукция, аналогия и другие.

Кроме того, формальная логика затрагивает и такие вопросы, например, как формализация содержательных теорий, проблема смысла и значения, логические ошибки и парадоксы и многие другие. Самостоятельное выделение этих вопросов достаточно условно, все они погружаются в проблематику основных направлений и тесно переплетены друг с другом.

Логика возникла в Древней Греции в рамках философии (см. Философия). История её развития насчитывает около двух с половиной тысячелетий и делится на два основных периода:

  1. Традиционная формальная логика (IV век до новой эры — середина XIX века). В развитии традиционной логики, в свою очередь, выделяются три периода:
    1. Античная логика (V век до новой эры — середина V века).
    2. Схоластическая (Средневековая) логика (середина V века — XV век).
    3. Логика Нового времени (XV–XVIII века).
  2. Современная (символическая, или математическая) логика (с середины XIX века).

Античную и схоластическую логику сейчас объединяет общее название «традиционной логики». Она, кроме историко-философского, по-прежнему имеет важное пропедевтическое значение и, будучи своеобразным стержнем интеллектуальной культуры человека, признается неотъемлемым элементом широкого гуманитарного образования.

Новый этап в развитии логики (со второй половины XIX века) был связан с её формализацией и последующей математизацией. В связи с этим новая логика получила название математической (или символической) логики (см. Логика символическая, Логика математическая). Современные логические системы в большинстве своём полностью опираются на формальные математические методы и являются логически интерпретированными исчислениями. Основные разделы математической логики — классические логика высказываний (см. Логика высказываний) и логика предикатов (см. Логика предикатов). Широкое распространение получили исследования модальной логики (см. Логика модальная). Системы логики, отрицающие те или иные фундаментальные законы логики, образовали спектр неклассических логик (см. Логики неклассические). Значительное число различных систем формальной логики обусловлено широкой сферой их приложения. Теоретическая математика, пожалуй, потеряла абсолютно лидирующее место в этом смысле, поскольку не менее интересные приложения осуществляются в областях теоретической физики (квантовая логика), прикладной математики (вычислительная математика и теория алгоритмов), информатики (компьютерные технологии, сети, программирование и исследования в области искусственного интеллекта), гуманитарного знания (лингвистика, юриспруденция, этика) и других.

Важным разделом современной формальной логики является металогика (см. Металогика), в которой исследуются различные проблемы, относящиеся к логическим теориям. Основными здесь являются вопросы о тех свойствах, которыми обладают логические теории: о непротиворечивости, полноте, наличии разрешающих процедур, независимости исходных дедуктивных принципов, а также о различных отношениях между теориями и так далее. В этом смысле металогика является своего рода саморефлексией логики относительно своих построений. Все метатеоретические исследования проводятся на специальном метаязыке, в качестве которого используется естественный язык, обогащённый специальной терминологией и метатеоретическими дедуктивными средствами.

Каждый день мы сталкиваемся с множеством задач, решение которых требует от нас способности к логическому мышлению. Логика как умение думать и рассуждать последовательно и непротиворечиво, требуется нам во многих жизненных ситуациях, начиная с решения сложных технических и бизнес- задач, заканчивая убеждением собеседников и совершением покупок в магазине.
Но несмотря на высокую потребность в этом умении мы часто совершаем логические ошибки, сами того не подозревая. Ведь среди многих людей бытует мнение, что правильно мыслить можно на основе жизненного опыта и так называемого здравого смысла, не пользуясь законами и специальными приемами «формальной логики». Для совершения простых логических операций, высказывания элементарных суждений и несложных выводов может подойти и здравый смысл, а если нужно познать или объяснить что-то более сложное, то здравый смысл нередко приводит нас к заблуждениям.

Причины этих заблуждений кроются в принципах развития и формирования основ логического мышления людей, которые закладываются еще в детстве. Обучение логическому мышлению не ведется целенаправленно, а отождествляется с уроками математики (для детей в школе или для студентов в университете), а также с решением и прохождением разнообразных игр, тестов, задач и головоломок. Но подобные действия способствуют развитию только малой доли процессов логического мышления. Кроме того достаточно примитивно объясняют нам принципы поиска решения заданий. Что касается развития словесно-логического мышления (или вербально-логического), умения правильно совершать мыслительные операции, последовательно приходить к умозаключениям, то этому нас почему-то не учат. Именно поэтому уровень развития логического мышления людей недостаточно высок.

Мы считаем, что логическое мышление человека и его способность к познанию должны развиваться системно и на основании специального терминологического аппарата и логического инструментария. На занятиях данного онлайн-тренинга вы узнаете о методиках самообразования для развития логического мышления, познакомитесь с основными категориями, принципами, особенностями и законами логики, а также найдете примеры и упражнения для применения полученных знаний и навыков.

  • Что такое логическое мышление?
  • Применение логики
  • Составляющие логического мышления
  • Как этому научиться?
  • Уроки логики
  • Как проходить занятия?
  • Вспомогательные материалы: тесты, игры, книги

Что такое логическое мышление?

Чтобы объяснить, что такое «логическое мышление», разделим это понятие на две части: мышление и логику. Теперь дадим определение каждой из этих составляющих.

Мышление человека — это психический процесс обработки информации и установления связей между предметами, их свойствами или явлениями окружающего мира. Мышление позволяет человеку находить связи между феноменами действительности, но чтобы найденные связи, действительно, отражали истинное положение дел, мышление должно быть объективным, правильным или, другими словами, логичным, то есть подчиненным законам логики.

Логика в переводе с греческого имеет несколько значений: «наука о правильном мышлении», «искусство рассуждения», «речь», «рассуждение» и даже «мысль». В нашем случае мы будем исходить из самого популярного определения логики как нормативной науки о формах, методах и законах интеллектуальной мыслительной деятельности человека. Логика изучает способы достижения истины в процессе познания опосредованным путём, не из чувственного опыта, а из знаний, полученных ранее, поэтому её также можно определить как науку о способах получения выводного знания. Одна из главных задач логики — определить, как прийти к выводу из имеющихся предпосылок и получить истинное знание о предмете размышления, чтобы глубже разобраться в нюансах изучаемого предмета мысли и его соотношениях с другими аспектами рассматриваемого явления.

Теперь мы можем дать определение самому логическому мышлению.

Логическое мышление – это мыслительный процесс, при котором человек использует логические понятия и конструкции, которому свойственна доказательность, рассудительность, и целью которого является получение обоснованного вывода из имеющихся предпосылок.

Также выделяют несколько видов логического мышления, перечислим их, начиная с самого простого:

1

Образно-логическое мышление

Образно-логическое мышление (наглядно-образное мышление) – различные мыслительные процессы так называемого «образного» решения задач, которое предполагает визуальное представление ситуации и оперирование образами составляющих её предметов. Наглядно-образное мышление, по сути, является синонимом слова «воображение», которое позволяет нам наиболее ярко и четко воссоздавать все многообразие различных фактических характеристик предмета или явления. Данный вид мыслительной деятельности человека формируется в детском возрасте, начиная, примерно, с 1,5 лет.

Чтобы понять, насколько у вас развит этот вид мышления, предлагаем вам пройти Тест на IQ «Прогрессивные матрицы Равена»

Тест Равена — это шкала прогрессивных матриц для оценки коэффициента интеллекта и уровня умственных способностей, а также логичности мышления, разработанная в 1936 году Джоном Равеном в соавторстве с Роджером Пенроузом. Данный тест может дать максимально объективную оценку IQ тестируемых людей, независимо от их уровня образования, социального сословия, рода деятельности, языковых и культурных особенностей. То есть можно с большой вероятностью утверждать, что данные, полученные в результате данного теста у двух людей из разных точек мира будут одинаково оценивать их IQ. Объективность оценки обеспечивается тем фактом, что основу этого теста составляют исключительно изображения фигур, а поскольку матрицы Равена относятся к числу невербальных тестов интеллекта, его задания не содержат текста.

Тест состоит из 60 таблиц. Вам будут предложены рисунки с фигурами, связанными между собой определенной зависимостью. Одной фигуры не хватает, она дается внизу картинки среди 6-8 других фигур. Ваша задача — установить закономерность, связывающую между собой фигуры на рисунке, и указать номер правильной фигуры, выбрав из предлагаемых вариантов. В каждой серии таблиц содержатся задания нарастающей трудности, в то же время усложнение типа заданий наблюдается и от серии к серии.

2

Абстрактно-логическое мышление

Абстрактно-логическое мышление – это совершение мыслительного процесса при помощи категорий, которых нет в природе (абстракций). Абстрактное мышление помогает человеку моделировать отношения не только между реальными объектами, но также и между абстрактными и образными представлениями, которые создало само мышление. Абстрактно-логическое мышление имеет несколько форм: понятие, суждение и умозаключение, о которых вы сможете подробнее узнать в уроках нашего тренинга.

3

Словесно-логическое мышление

Словесно-логическое мышление (вербально-логическое мышление)— один из видов логического мышления, характеризующийся использованием языковых средств и речевых конструкций. Данный вид мышления предполагает не только умелое использование мыслительных процессов, но и грамотное владение своей речью. Словесно-логическое мышление необходимо нам для публичных выступлений, написания текстов, ведения споров и в других ситуациях, где нам приходится излагать свои мысли при помощи языка.

Применение логики

Мышление с использованием инструментария логики необходимо практически в любой области человеческой деятельности, в том числе в точных и гуманитарных науках, в экономике и бизнесе, риторике и ораторском мастерстве, в творческом процессе и изобретательстве. В одних случаях применяется строгая и формализованная логика, например, в математике, философии, технике. В других случаях логика лишь снабжает человека полезными приемами для получения обоснованного вывода, например, в экономике, истории или просто в обычных «жизненных» ситуациях.

Как уже было сказано, часто мы пытаемся мыслить логически на интуитивном уровне. Кому-то это удается хорошо, кому-то хуже. Но подключая логический аппарат, лучше все-таки знать, какие именно мыслительные приемы мы используем, так как в этом случае мы можем:

  • Точнее подобрать нужный способ, который позволит прийти к правильному выводу;
  • Мыслить быстрее и качественнее – как следствие из предыдущего пункта;
  • Лучше излагать свои мысли;
  • Избежать самообмана и логических заблуждений,
  • Выявлять и устранять ошибки в умозаключениях других людей, справиться с софистикой и демагогией;
  • Применять нужную аргументацию для убеждения собеседников.

Составляющие логического мышления

Часто применение логического мышления связывают с быстрым решением заданий на логику и прохождением тестов на определение уровня интеллектуального развития (IQ). Но это направление связано в большей степени с доведением мыслительных операций до автоматизма, что является весьма незначительной частью того, чем логика может быть полезна человеку.

Умение логически мыслить объединяет в себе множество навыков по использованию различных мыслительных действий и включает в себя:

  1. Знание теоретических основ логики.
  2. Умение правильно совершать такие мыслительные операции, как: классификация, конкретизация, обобщение, сравнение, аналогия и другие.
  3. Уверенное использование ключевых форм мышления: понятие, суждение, умозаключение.
  4. Способность аргументировать свои мысли в соответствии с законами логики.
  5. Навык быстро и эффективно решать сложные логические задачи (как учебные, так и прикладные).

Конечно, такие операции мышления с применением логики как определение, классификация и категоризация, доказательство, опровержение, умозаключение, вывод и многие другие применяются каждым человеком в его мыслительной деятельности. Но используем мы их неосознанно и часто с погрешностями без отчетливого представления о глубине и сложности тех мыслительных действий, из которых состоит даже самый элементарный акт мышления. А если вы хотите, чтобы ваше логическое мышление было действительно правильным и строгим, этому нужно специально и целенаправленно учиться.

Как этому научиться?

Логическое мышление не дается нам с рождения, ему можно только научиться. Существует два основных аспекта обучения логике: теоретический и практический.

Теоретическая логика, которая преподается в университетах, знакомит студентов с основными категориями, законами и правилами логики.

Практическое обучение направлено на применение полученных знаний в жизни. Однако в действительности современное обучение практической логике обычно связано прохождением разных тестов и решением задач на проверку уровня развития интеллекта (IQ) и почему-то не затрагивает применение логики в реальных жизненных ситуациях.

Чтобы на самом деле освоить логику, следует совместить теоретические и прикладные аспекты. Уроки и упражнения должны быть направлены на формирование интуитивно понятного, доведенного до автоматизма логического инструментария и закрепление полученных знаний с целью их применения в реальных ситуациях.

По этому принципу и был составлен онлайн-тренинг, который вы сейчас читаете. Цель данного курса – научить вас логически мыслить и применять методы логического мышления. Занятия направлены на ознакомление с основами логического мышления (тезаурус, теории, методы, модели), мыслительными операциями и формами мышления, правилами аргументации и законами логики. Кроме того, каждый урок содержит в себе задания и упражнения для тренировки использования полученных знаний на практике.

Уроки логики

Собрав широкий спектр теоретических материалов, а также изучив и адаптировав опыт обучения прикладным формам логического мышления, мы приготовили ряд уроков для полноценного овладения данным навыком.

Урок 1. Логический анализ языка

Первый урок нашего курса мы посвятим сложной, но очень важной теме – логическому анализу языка. Сразу стоит оговориться, что эта тема многим может показаться абстрактной, нагруженной терминологией, неприменимой на практике. Не пугайтесь! Логический анализ языка – это основа любой логической системы и правильного рассуждения. Те термины, которые мы здесь узнаем, станут нашим логическим алфавитом, без знания которого просто нельзя пойти дальше, но постепенно мы научимся пользоваться им с лёгкостью.

Урок 2. Понятие в логике

Логическое понятие — это форма мышления, отражающая предметы и явления в их существенных признаках. Понятия бывают разных видов: конкретные и абстрактные, единичные и общие, собирательные и несобирательные, безотносительные и соотносительные, положительные и отрицательные, и другие. В рамках логического мышления важно уметь отличать эти виды понятий, а также производить новые понятия и определения, находить отношения между понятиями и совершать специальные действия над ними: обобщение, ограничение и деление. Всему этому вы научитесь в данном уроке.

Урок 3. Определение в логике

В первых двух уроках мы говорили о том, что задача логики – помочь нам перейти от интуитивного употребления языка, сопровождаемого ошибками и разногласиями, к более упорядоченному его использованию, лишённому двусмысленности. Умение правильно обращаться с понятиями представляет собой один из необходимых для этого навыков. Другой не менее важный навык – умение правильно давать определения. В этом уроке мы расскажем, как этому научиться и как избежать самых распространённых ошибок.

Урок 4. Логическое суждение

Логическое суждение — это форма мышления, в которой утверждается или отрицается что-либо об окружающем мире, предметах, явлениях, а также отношениях и связях между ними. Суждения в логике состоят из субъекта (о чем идет речь в суждении), предиката (что говорится о субъекте), связки (что соединяет субъект и предикат) и квантора (объема субъекта). Суждения могут быть различных видов: простые и сложные, категорические, общие, частные, единичные. Также отличаются и формы связок между субъектом и предикатом: равнозначность, пересечение, подчинение и совместимость. Кроме того, в рамках составных (сложных) суждений могут быть свои связки, которые определяют ещё шесть видов сложных суждений. Умение логически мыслить предполагает способность правильно строить различные виды суждений, понимать их структурные элементы, признаки, отношения между суждениями, а также проверять является суждение истинным или ложным.

Урок 5. Законы логики

Перед тем как перейти к последней третьей форме мышления (умозаключению), важно понять, какие существуют логические законы, или, другими словами, объективно существующие правила построения логического мышления. Их предназначение, с одной стороны, в помощи построения умозаключений и аргументации, а с другой – в предупреждении ошибок и нарушений логичности, связанных с рассуждениями. данном уроке будут рассмотрены следующие законы формальной логики: закон тождества, закон исключённого третьего, закон противоречия, закон достаточного основания, а также законы де Моргана, законы дедуктивных умозаключений, закон Клавия и законы деления. Изучив примеры и выполнив специальные упражнения, вы научитесь целенаправленно использовать каждый из этих законов.

Урок 6. Умозаключение

Умозаключение — это третья форма мышления, в которой из одного, двух или нескольких суждений, называемых посылками, вытекает новое суждение, называемое заключением или выводом. Умозаключения делятся на три вида: дедуктивные, индуктивные и умозаключения по аналогии. При дедуктивном умозаключении (дедукции) из общего правила делается вывод для частного случая. Индукция — это умозаключения, в которых из нескольких частных случаев выводится общее правило. В умозаключениях по аналогии на основе сходства предметов в одних признаках делается вывод об их сходстве и в других признаках. На этом занятии вы познакомитесь со всеми видами и подвидами умозаключений, научитесь строить разнообразные причинно-следственные связи.

Урок 7. Силлогизмы

Этот урок будет посвящён многопосылочным умозаключениям. Так же как и в случае однопосылочных умозаключений, вся необходимая информация в скрытом виде будет присутствовать уже в посылках. Однако, поскольку посылок теперь будет много, то способы её извлечения становятся более сложными, а потому и добытая в заключении информация не будет казаться тривиальной. Кроме того, нужно отметить, что существует много разных видов многопосылочных умозаключений. Мы с вами сосредоточимся только на силлогизмах. Они отличаются тем, что и в посылках и в заключении имеют категорические атрибутивные высказывания и на основании наличия или отсутствия каких-то свойств у объектов позволяют сделать вывод о наличии или отсутствии у них других свойств.

Урок 8. Типы рассуждений

В предыдущих уроках мы поговорили о разных логических операциях, которые составляют важную часть любого рассуждения. Среди них были операции над понятиями, определения, суждения и умозаключения. Значит, на данный момент должно быть ясно, из каких компонентов рассуждения состоят. Однако мы ещё нигде не касались вопросов о том, каким образом может быть организовано рассуждение в целом и какими в принципе бывают типы рассуждений. Это и станет темой последнего урока. Начнём с того, что рассуждения делятся на дедуктивные и правдоподобные. Все виды умозаключений, рассмотренные в предыдущих уроках: умозаключения по логическому квадрату, обращения, силлогизмы, энтимемы, сориты, – представляют собой именно дедуктивные рассуждения. Их отличительный признак состоит в том, что посылки и заключения в них связаны отношением строгого логического следования, в то время как в случае правдоподобных рассуждений подобная связь отсутствует. Сначала поговорим подробнее о дедуктивных рассуждениях.

Как проходить занятия?

Сами уроки со всеми упражнениями можно пройти за 1-3 недели, усвоив теоретический материал и немного попрактиковавшись. Но для развития логического мышления важно заниматься системно, много читать и постоянно тренироваться.

Для максимального эффекта рекомендуем вам сначала просто прочитать весь материал, потратив на это 1-2 вечера. Затем проходите по 1 уроку ежедневно, выполняя необходимые упражнения и следуя предложенным рекомендациям. После того как вы освоите все уроки, займитесь эффективным повторением по данной методике, чтобы запомнить материал надолго. Далее старайтесь чаще применять приёмы логического мышления в жизни, при написании статей, писем, при общении, в спорах, в делах и даже на досуге. Подкрепляйте свои знания чтением книг и учебников, а также с помощью дополнительного материала, о котором речь пойдет ниже.

Дополнительный материал

Помимо уроков в данном разделе мы постарались подобрать много полезного материала по рассматриваемой тематике:

  • Логические задачи;
  • Тесты на логическое мышление;
  • Логические игры;
  • Самые умные люди России и мира;
  • Видеоуроки и мастерклассы.

А также книги и учебники, статьи, цитаты, вспомогательные тренинги.

Книги и учебники по логике

На данной странице мы подобрали полезные книги и учебники, которые помогут вам углубить свои знания в логике и логическом мышлении:

Статьи о логическом мышлении

Также обратите внимание на раздел «Логика и интеллект» нашего блога, в котором мы собираем интересные материалы по данной тематике, среди которых:

  • 4 закона логики
  • Эвристика
  • Кот Шрёдингера – суть простыми словами
  • Что нужно знать о тестах на IQ
  • Пафос, логос, этос
  • И другие статьи наших авторов

Тренинги

Тренировка и развитие логического мышления могут быть дополнены следующими тренингами, которые вы сможете бесплатно пройти на нашем сайте:

1. Память и внимание являются важными способностями для логического мышления, которые позволят концентрироваться на большом количестве мыслительных объектов, над которыми осуществляются логические операции.

2. Творческое мышление вместе с логикой даст вам возможность не только строить правильные выводы, но искать нестандартные решения там, где логика «зашла в тупик».

3. Ораторское искусство и писательское мастерство формируют словестно-логическое мышление, а также позволяют на практике применить полученные знания в данном курсе.

4. Устный счет и скорочтение подходят для развития и тренировки интеллектуальных способностей.

5. Психология человека является полезной в понимании логического мышления, ведь именно психология как наука изучает мыслительные операции, мотивы, стимулы человека.

Цитаты

О логическом мышлении высказывались многие великие люди, вот некоторые цитаты, которые мы посчитали уместными в данном тренинге.

Мыслю, следовательно, существую (или на латинском Cogito, ergo sum, или в оригинале на французском Je pense, donc je suis) — Рене Декарт

Лишь немногие люди мыслят логично. В большинстве своем мы необъективны, предубеждены, заражены предвзятыми мнениями, ревностью, подозрительностью, страхом, гордыней и завистью — Дейл Карнеги

Логика, которая одна может дать достоверность, есть орудие доказательства — Анри Пуанкаре

Логика — это анатомия мышления — Джон Локк

Логика не тождественна знанию, хотя область ее и совпадает с областью знания. Логика есть общий ценитель и судья всех частных исследований. Она не задается целью находить очевидность; она только определяет, найдена очевидность или нет. Логика не наблюдает, не изобретает, не открывает — она судит. Итак, логика есть наука об отправлениях разума, служащих для оценки очевидности; она есть учение как о самом процессе перехода от известных истин к неизвестным, так и о всех других умственных действиях, поскольку они помогают этому процессу — Джон Стюарт Милль

Мудрость — это самая точная из наук. Ошибаться можно различно, верно поступать можно лишь одним путём, поэтому-то первое легко, а второе трудно; легко промахнуться, трудно попасть в цель — Аристотель

Желаем вам успеха в освоении навыка логического мышления!

Законы логики (или логические законы) — это общее название множества законов, образующих основу логической дедукции (см. Дедукция). Понятие о логическом законе восходит к античному понятию о логосе (см. Логос) как о предпосылке объективной («природной») правильности рассуждений. Поскольку логика (см. Логика) изучает характер связи мыслей в процессе рассуждения, существуют определённые формальные и содержательные правила, следование которым обязательно. Различные по своей структуре и степени сложности рассуждения подчиняются разным правилам. Среди них можно выделить основные и производные: основные правила имеют более общий характер, производные — выводятся из основных. Наряду с этим существует такой тип правил логики, которые можно назвать всеобщими. Обычно такие правила называют законами мышления. Под законом вообще имеют в виду внутреннюю, необходимую и существенную связь явлений. Законы мышления представляют собой операциональные директивы мышления. Их происхождение обусловлено рациональной активностью субъекта. Выраженная в правилах, нормах, рекомендациях, целесообразная активность находит своё воплощение в принципах, имеющих всеобщий характер. В отличие от законов естествознания, которые описывают связь явлений природы, многократно повторяемую в идентичных условиях, законы мышления предписывают определённые способы интеллектуальной деятельности. Цель законов логики — сформулировать основания правил и рекомендаций, следуя которым можно достичь истины. Поэтому законы мышления не являются законами в том смысле, в котором указанный термин используется для описаний явлений природы. Таким образом, законы логики представляют собой законы правильного мышления человека о мире, а не законы самого мира.

Правила мышления впервые получают логическое содержание у Аристотеля, положившего начало систематическому описанию и каталогизации таких схем логических связей элементарных высказываний в сложные, истинность которых вытекает из одной только их формы, а точнее — из одного только понимания смысла логических связей, безотносительно к истинностному значению элементарных высказываний. Большинство логических законов, открытых Аристотелем, представляют собой законы силлогизма. Позже были открыты и другие законы, и даже было установлено, что совокупность законов логики бесконечна. В некотором смысле рассмотреть эту совокупность удаётся с помощью различных формальных теорий логического рассуждения — так называемых логических исчислений, в которых интуитивное понятие «логический закон» реализуется в точном понятии «общезначимой формулы» данного исчисления, что, в свою очередь, делает понятие «логический закон» относительным. Однако типом логического исчисления полагаются одновременно и границы этой относительности. При этом тип исчисления, как правило, не является делом произвольного выбора, а диктуется (или подсказывается) «логикой вещей», о которых хотят рассуждать, а также нашей субъективной уверенностью в том или ином характере этой логики. Исчисления, основанные на одной и той же гипотезе о характере «логики вещей», являются эквивалентными в том смысле, что в них каталогизируются одни и те же логические законы. Например, исчисления, основанные на гипотезе двузначности, несмотря на всё их внешнее разнообразие, описывают одну и ту же область классических законов логики — мир тождественных истин (или тавтологий), издавна получивших философскую характеристику «вечных истин» или «истин во всех возможных мирах» (см. Возможные миры). Логикой вещей, отражением которой исторически явились логические законы так называемой интуиционистской логики, является логика умственных математических построений — «логика знания», а не «логика бытия».

Логические законы отличаются от логических правил вывода. Первые представляют класс общезначимых выражений и формулируются в объектном языке исчисления. Вторые служат для описания фактов логического следования (см. Логическое следование) одних выражений из других, не обязательно общезначимых, и формулируются в метаязыке исчисления. В отличие от законов логики, правила вывода имеют вид предписаний и носят, по существу, нормативный характер. При построении исчислений без правил вывода обойтись нельзя, а без законов логики, в принципе, можно (именно так и поступают в исчислениях естественного вывода). Тем не менее, изучение логических законов образует естественный исходный пункт логического анализа приемлемых (логически правильных) способов рассуждений (умозаключений), поскольку понятие «приемлемое» или «логически правильное» рассуждение уточняется через понятие «логический закон».

В традиционной формальной логике термин «закон логики» имел узкий смысл и применялся только к четырём так называемым основополагающим законам правильного мышления — к закону тождества, закону непротиворечия, к закону исключённого третьего и к закону достаточного основания:

  1. Закон тождества. В процессе умозаключения всякое высказывание и суждение должны оставаться тождественными самим себе (см. Закон тождества).
  2. Закон непротиворечия. Два противоположных суждения не могут быть истинными в одно и то же время и в одном и том же отношении (см. Закон непротиворечия).
  3. Закон исключённого третьего. Из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано (см. Закон исключённого третьего).
  4. Закон достаточного основания. Никакое суждение не может утверждаться без достаточного основания (см. Закон достаточного основания).

Указанная «канонизация» термина «закон логики» в настоящее время является данью традиции и не отвечает действительному положению вещей. Тем не менее, эти законы можно принять в методологическом смысле как определённые принципы (или постулаты) теоретического мышления, так как они являются наиболее общими и используются при оперировании понятиями и суждениями, в умозаключениях, доказательствах и опровержениях, и поэтому присутствуют практически во всех логических системах.

В этом смысле закон тождества (lex identitatis) истолковывается как принцип постоянства или принцип сохранности предметного и смыслового значений суждений (высказываний) в некотором заведомо известном или подразумеваемом контексте (в выводе, доказательстве, теории). В языке логических исчислений указанная сохранность обычно выражается формулой A ⊃ A. Принятие закона тождества для суждения A не означает, вообще говоря, принятия самого A. Но если A принято, то закон тождества принимается с необходимостью для исчислений с общезначимой формулой A ⊃ (A ⊃ A). Для исчислений, включающих отрицание, это сведение абстракции постоянства суждения к принятию самого суждения имеет форму закона: (A ⊃ ¬ (A ⊃ A) ⊃ ¬ A), то есть если при допущении суждения для него отрицается закон тождества, то тем самым отрицается и само это суждение.

Закон непротиворечия (lex contradictionis) указывает на недопустимость одновременного утверждения (в рассуждении, в тексте или теории) двух суждений, из которых одно является логическим отрицанием другого, то есть суждений вида A и ¬ A или их конъюнкции, или эквиваленции, или — в более широком смысле — утверждений о тождестве заведомо различных объектов, поскольку обычно правила логики таковы, что позволяют из противоречия выводить произвольные суждения, что обесценивает содержательный смысл умозаключений или теорий. Наличие противоречия в рассуждении (теории) создаёт парадоксальную ситуацию и нередко указывает на несовместимость посылок, положенных в основу рассуждения (теории). Этим обстоятельством часто пользуются в косвенных доказательствах.

Закон исключённого третьего (lex exclusii tertii) на логическом языке записывается формулой A ⌵ ¬ A и утверждает, что нет ничего среднего (промежуточной оценки) между членами противоречивой пары (отсюда другое латинское название этого закона — tertium non datur). В методологическом плане этот закон выражает конструктивно неоправданную идею о разрешимости (потенциально осуществимом указании на истинность или ложность) произвольного суждения. В отличие от формулы, соответствующей закону противоречия, формула, соответствующая закону исключённого третьего, не выводима в интуиционистских и конструктивных исчислениях, хотя и неопровержима в них. Дихотомия установленных истины и лжи неоспорима, но дихотомия утверждения и отрицания оспаривалась неоднократно. Наиболее последовательную критику закона исключённого третьего дал Л. Э. Я. Брауэр. В свете его критики этот закон следует рассматривать только как принцип (или постулат) классической логики.

Закон достаточного основания (lex rationis determinatis seu sufficientis) выражает методологическое требование обоснованности всякого знания, всякого суждения, которое мы хотели бы принять за отображение истинного (действительного) положения вещей. В этом смысле он применим не только к выводному знанию (в частности, к аксиомам и постулатам научных теорий), но и ко всей области фактических истин, не имеющих отношения к формальной логике. Не случайно Г. В. Лейбниц, который ввёл этот принцип в научный обиход, относил его в первую очередь не к логике, а ко всем событиям, которые случаются в мире.

В приложениях логических законов к конкретным ситуациям с особой наглядностью обнаруживается их общая черта: все они представляют собой тавтологии и не несут содержательной, «предметной» информации. Это — общие схемы, отличительная особенность которых в том, что, подставляя в них любые конкретные высказывания (как истинные, так и ложные), мы обязательно получим истинное выражение. Указанные законы мышления имеют в логике такое же значение, какое в математике имеют аксиомы (см. Аксиома) или постулаты и обладают таким же формальным характером, как и формулы алгебры: в последних не говорится о том, по отношению к каким числовым значениям они выполняются, а законы мышления не содержат в себе содержательных характеристик, то есть не квалифицируют то, что именно должно или не должно отождествляться, что именно и чему должно или не должно противоречить, и так далее. Именно в этом и заключается их обобщающий характер как операциональных директив правильного мышления и рассуждения.

[ad01]

Рубрики: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *